oru.sePublikationer
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Genetisk multikriteriaoptimering inom tillståndsbaserat underhåll
Örebro University, School of Science and Technology.
2009 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Genetic multicriteria optimazation for conditions based maintenance (English)
Abstract [sv]

I denna rapport går jag igenom hur algoritmen NSGA-II kan användas för att optimera tillståndsbaserat underhåll av en fordonsflotta. I rapportens resultatdel visas grafer och siffror, men dessa är mer tänkta som exempel än som slutgiltiga svar. Hela arbetet är tänkt som ett underlag för att avgöra om en genetisk multikriteria algoritm så som NSGA-II kan vara användbar i optimeringsproblem så som underhållsplanering som uppdragsgivaren BAE system ställts för.

Jag går igenom hur genetiska algoritmer härmar naturen i sin process och vilka för och nackdelar detta har, mer exakt hur NSGA-II gör det, vilken typ av svar man kan förvänta sig och hur detta ska tolkas. Slutligen ges resultat från det problemet jag ställde upp som är en förenklad version av det problem BAE systems ställts inför.

Abstract [en]

In this report I explain how the algorithm NSGA-II could be used to optimize condition based maintenance on a vehicle fleet. In the report result part some graphs and numbers are shown but these are thought to be an example more than absolute answer. The report is a material for deciding if a genetic multi criteria algorithm like NSGA-II could be useful in optimization problems such as the condition based maintenance problem presented by BAE systems.

I explain how genetic algorithms mimic nature in its process and what benefits and drawbacks comes with that, more precise about how NSGA-II works, what type of answers you should expect and what to make off them. Lastly some results are given from the simplified version of problem given to me from BAE system.

Place, publisher, year, edition, pages
2009. , 25 p.
Keyword [en]
optimization, genetic, multi criteria, algorithm, genetic multi criteria algorithm, nsga-ii
Keyword [sv]
optimering, genetisk, multikriteria, algoritm, genetisk multikriteria algoritm, nsga-ii
National Category
Engineering and Technology Computer and Information Science Computer Science Software Engineering
Identifiers
URN: urn:nbn:se:oru:diva-10305ISRN: ORU-NAT/DAT-GK-2010/0005--SEOAI: oai:DiVA.org:oru-10305DiVA: diva2:307623
Subject / course
Computer Engineering
Presentation
2009-06-01, T213, Örebro universitet, Fakultetsgatan 1, Örebro, 14:30 (Swedish)
Uppsok
Technology
Supervisors
Examiners
Available from: 2010-04-06 Created: 2010-04-01 Last updated: 2017-10-18Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Reicher, Robin
By organisation
School of Science and Technology
Engineering and TechnologyComputer and Information ScienceComputer ScienceSoftware Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 89 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf