To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Human Stem Cell Exposure to Developmental Stage Zebrafish Extracts: a Novel Strategy for Tuning Stemness and Senescence Patterning
Show others and affiliations
2014 (English)In: Cell, ISSN 2329-7042, Vol. 2, no 5, article id e1226Article in journal (Refereed) Published
Abstract [en]

Background: Zebrafish exhibits extraordinary ability for tissue regeneration. Despite growing investigations dissecting the molecular underpinning of such regenerative potential, little is known about the possibility to use the chemical inventory of the zebrafishembryo to modulate human stem cell dynamics.

Methods: Extracts from zebrafish embryo were collected at different developmental stages, referred to as ZF1, ZF2, ZF3 (early stages), and ZF4, ZF5 (late stages). Human adipose-derived stem cells (hASCs), isolated from microfractured fat tissue obtained with a novel non-enzymatic method (Lipogems), were cultured in absence or presence of each developmental stage extract. Cell viability was assessed by MTT assay. Nuclear morphology was investigated by cell-permeable dye 4’,6-DAPI. Caspase-3 activity was assessed by ELISA. Gene transcription was monitored by real-time PCR.

Results: Late developmental stage extracts decreased cell viability and elicited caspase-3 mediated apoptosis. This effect did not involve Bax or Bcl-2 transcription. Conversely, early developmental stage ZF1 did not affect cell viability or apoptosis, albeit increasing Bax/Bcl-2mRNA ratio. ZF1 enhanced transcription of the stemness/pluripotency genes Oct-4, Sox-2and c-Myc. ZF1 also induced the transcription of TERT, encoding the catalytic subunit of telomerase, as well as the gene expression of Bmi-1, a chromatin remodeler acting as a major telomerase-independent repressor of senescence. These transcriptional responses were restricted to the action of early stage factors, since they were not elicited by late developmental stage ZF5.

Conclusions: Exposure to early developmental stage zebrafish embryo extracts may enhance stem cell expression of multipotency and activate both telomerase-dependent and -independent antagonists of cell senescence. These outcomes may prove rewarding during prolonged expansion in culture, as it occurs in most cell therapy protocols.

Place, publisher, year, edition, pages
2014. Vol. 2, no 5, article id e1226
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Research subject
Biomedicine
Identifiers
URN: urn:nbn:se:oru:diva-41688OAI: oai:DiVA.org:oru-41688DiVA, id: diva2:780970
Available from: 2015-01-15 Created: 2015-01-15 Last updated: 2017-10-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Fulltext

Authority records

Ljungberg, Liza U.

Search in DiVA

By author/editor
Ljungberg, Liza U.
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 732 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf