oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving Gas Tomography With Mobile Robots: An Evaluation of Sensing Geometries in Complex Environments
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0002-5973-7424
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-1662-0960
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0001-5061-5474
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-4026-7490
Vise andre og tillknytning
2017 (engelsk)Inngår i: 2017 ISOCS/IEEE International Symposium on Olfaction andElectronic Nose (ISOEN 2017) Proceedings, IEEE, 2017, artikkel-id 7968895Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

An accurate model of gas emissions is of high importance in several real-world applications related to monitoring and surveillance. Gas tomography is a non-intrusive optical method to estimate the spatial distribution of gas concentrations using remote sensors. The choice of sensing geometry, which is the arrangement of sensing positions to perform gas tomography, directly affects the reconstruction quality of the obtained gas distribution maps. In this paper, we present an investigation of criteria that allow to determine suitable sensing geometries for gas tomography. We consider an actuated remote gas sensor installed on a mobile robot, and evaluated a large number of sensing configurations. Experiments in complex settings were conducted using a state-of-the-art CFD-based filament gas dispersal simulator. Our quantitative comparison yields preferred sensing geometries for sensor planning, which allows to better reconstruct gas distributions.

sted, utgiver, år, opplag, sider
IEEE, 2017. artikkel-id 7968895
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-60646DOI: 10.1109/ISOEN.2017.7968895ISBN: 978-1-5090-2392-9 (digital)ISBN: 978-1-5090-2393-6 (tryckt)OAI: oai:DiVA.org:oru-60646DiVA, id: diva2:1139140
Konferanse
2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) 28-31 May 2017 Montreal QC, Canada
Tilgjengelig fra: 2017-09-06 Laget: 2017-09-06 Sist oppdatert: 2019-03-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Arain, Muhammad AsifFan, HanHernandez Bennetts, VictorSchaffernicht, ErikLilienthal, Achim J.

Søk i DiVA

Av forfatter/redaktør
Arain, Muhammad AsifFan, HanHernandez Bennetts, VictorSchaffernicht, ErikLilienthal, Achim J.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 379 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf