oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Dual PHD Filter for Effective Occupancy Filtering in a Highly Dynamic Environment
Örebro universitet, Institutionen för naturvetenskap och teknik. National Laboratory of Science and Technology on Automatic Target Recognition, National University of Defense Technology, Changsha, China. (Center of Applied Autonomous Sensor Systems)ORCID-id: 0000-0002-9990-9163
Örebro universitet, Institutionen för naturvetenskap och teknik. (Center of Applied Autonomous Sensor Systems)ORCID-id: 0000-0002-9503-0602
Örebro universitet, Institutionen för naturvetenskap och teknik. (Center of Applied Autonomous Sensor Systems)ORCID-id: 0000-0001-8658-2985
School of Sciences, University of Salamanca, Salamanca, Spain.
Vise andre og tillknytning
2018 (engelsk)Inngår i: IEEE transactions on intelligent transportation systems (Print), ISSN 1524-9050, E-ISSN 1558-0016, Vol. 19, nr 9, s. 2977-2993Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Environment monitoring remains a major challenge for mobile robots, especially in densely cluttered or highly populated dynamic environments, where uncertainties originated from environment and sensor significantly challenge the robot's perception. This paper proposes an effective occupancy filtering method called the dual probability hypothesis density (DPHD) filter, which models uncertain phenomena, such as births, deaths, occlusions, false alarms, and miss detections, by using random finite sets. The key insight of our method lies in the connection of the idea of dynamic occupancy with the concepts of the phase space density in gas kinetic and the PHD in multiple target tracking. By modeling the environment as a mixture of static and dynamic parts, the DPHD filter separates the dynamic part from the static one with a unified filtering process, but has a higher computational efficiency than existing Bayesian Occupancy Filters (BOFs). Moreover, an adaptive newborn function and a detection model considering occlusions are proposed to improve the filtering efficiency further. Finally, a hybrid particle implementation of the DPHD filter is proposed, which uses a box particle filter with constant discrete states and an ordinary particle filter with a time-varying number of particles in a continuous state space to process the static part and the dynamic part, respectively. This filter has a linear complexity with respect to the number of grid cells occupied by dynamic obstacles. Real-world experiments on data collected by a lidar at a busy roundabout demonstrate that our approach can handle monitoring of a highly dynamic environment in real time.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2018. Vol. 19, nr 9, s. 2977-2993
Emneord [en]
Mobile robot, occupancy filtering, PHD filter, BOF, particle filter, random finite set
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-63981DOI: 10.1109/TITS.2017.2770152ISI: 000444611400021Scopus ID: 2-s2.0-85038368968OAI: oai:DiVA.org:oru-63981DiVA, id: diva2:1172125
Merknad

Funding Agencies:

EU Project SPENCER  600877 

Marie Sklodowska-Curie Individual Fellowship  709267 

National Twelfth Five-Year Plan for Science and Technology Support of China  2014BAK12B03 

Tilgjengelig fra: 2018-01-09 Laget: 2018-01-09 Sist oppdatert: 2018-09-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Fan, HongqiKucner, Tomasz PiotrMagnusson, MartinLilienthal, Achim

Søk i DiVA

Av forfatter/redaktør
Fan, HongqiKucner, Tomasz PiotrMagnusson, MartinLilienthal, Achim
Av organisasjonen
I samme tidsskrift
IEEE transactions on intelligent transportation systems (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 3398 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf