To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Contextual classification using multi-temporal Landsat TM data
University of Umeå.
1993 (engelsk)Licentiatavhandling, monografi (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Department of Statistics, University of Umeå , 1993. , s. 72
Serie
Statistical research report / University of Umeå, ISSN 0348-0399 ; 5
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-66349OAI: oai:DiVA.org:oru-66349DiVA, id: diva2:1195151
Tilgjengelig fra: 2018-04-11 Laget: 2018-04-04 Sist oppdatert: 2018-05-07bibliografisk kontrollert
Inngår i avhandling
1. Classification of Remotely Sensed Data Utilising the Autocorrelation between Spatio-Temporal Neighbours
Åpne denne publikasjonen i ny fane eller vindu >>Classification of Remotely Sensed Data Utilising the Autocorrelation between Spatio-Temporal Neighbours
1997 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The subject of this thesis is methods for classifying land using satellite images, and adherent parameter estimation. A satellite image consists of a set of pixels where measurements of spectral intensities are observed. Based on these spectral intensities, each pixel is assigned a class. The classification methods considered in this thesis are based on Bayesian decision theory.

Accounting for spatial and temporal dependence is of importance for classifying land. One such classification method is an autocorrelation method where the observed intensities are assumed to consist of the true intensities and some autocorrelated noise. In order to include temporal dependence, the spatial autocorrelation methods is extended to comprise information about temporal neighbours.

For applying classification methods it is necessary to estimate adherent parameters. The spatial autocorrelation parameter relies on the noise components, which are unobservable. An autocorrelation estimator based on Maximum-Likelihood estimates of autocovariances is introduced. This estimator is based on components that are differences between intensities from pixels taken on two different occasions over the same area. By doing so, this problem is easier to handle. Asymptotic properties such as strong consistency and asymptotic normality are proved for this estimator.

An efficient implementation algorithm for the autocorrelation methods is given which is necessary given the large amount of computation required. The suggested spatio-temporal autocorrelation method and some other classification methods are applied to real Landsat TM data. The results of the classifications were evaluated using data obtained through a field inventory. The conclusion from this study was that the spatio-temporal autocorrelation method performed best.

sted, utgiver, år, opplag, sider
Umeå: Umeå University, 1997. s. 27
Emneord
Image classification, strong mixing, spatio-temporal model, autocorrelation model, autocorrelation estimator, robustness aspects, strong consistency, asymptotic normality, evaluation
HSV kategori
Forskningsprogram
Statistik
Identifikatorer
urn:nbn:se:oru:diva-66563 (URN)91-7191-316-5 (ISBN)
Tilgjengelig fra: 2018-05-07 Laget: 2018-04-12 Sist oppdatert: 2018-05-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Flygare, Ann-Marie

Søk i DiVA

Av forfatter/redaktør
Flygare, Ann-Marie

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 305 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf