oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integrating SLAM and gas distribution mapping (SLAM-GDM) for real-time gas source localization
Centre of Excellence for Advanced Sensor Technology (CEASTech), Universiti Malaysia Perlis, Arau, Malaysia; School of Mechatronics Engineering, Universiti Malaysia Perlis (UniMAP), Arau, Malaysia.
Centre of Excellence for Advanced Sensor Technology (CEASTech), Universiti Malaysia Perlis, Arau, Malaysia; School of Mechatronics Engineering, Universiti Malaysia Perlis (UniMAP), Arau, Malaysia.
Örebro universitet, Institutionen för naturvetenskap och teknik. (Applied Autonomous Sensor Systems)ORCID-id: 0000-0001-5061-5474
Centre of Excellence for Advanced Sensor Technology (CEASTech), Universiti Malaysia Perlis, Arau, Malaysia.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Advanced Robotics, ISSN 0169-1864, E-ISSN 1568-5535, Vol. 32, nr 17, s. 903-917Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Gas distribution mapping (GDM) learns models of the spatial distribution of gas concentrations across 2D/3D environments, among others, for the purpose of localizing gas sources. GDM requires run-time robot positioning in order to associate measurements with locations in a global coordinate frame. Most approaches assume that the robot has perfect knowledge about its position, which does not necessarily hold in realistic scenarios. We argue that the simultaneous localization and mapping (SLAM) algorithm should be used together with GDM to allow operation in an unknown environment. This paper proposes an SLAM-GDM approach that combines Hector SLAM and Kernel DM+V through a map merging technique. We argue that Hector SLAM is suitable for the SLAM-GDM approach since it does not perform loop closure or global corrections, which in turn would require to re-compute the gas distribution map. Real-time experiments were conducted in an environment with single and multiple gas sources. The results showed that the predictions of gas source location in all trials were often correct to around 0.5-1.5 m for the large indoor area being tested. The results also verified that the proposed SLAM-GDM approach and the designed system were able to achieve real-time operation.

sted, utgiver, år, opplag, sider
Taylor & Francis Group, 2018. Vol. 32, nr 17, s. 903-917
Emneord [en]
Gas source localization, gas distribution mapping, SLAM, mobile robot, gas sensing, metal oxide gas sensor
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-69553DOI: 10.1080/01691864.2018.1516568ISI: 000445798600001Scopus ID: 2-s2.0-85053600678OAI: oai:DiVA.org:oru-69553DiVA, id: diva2:1256339
Merknad

Funding Agency:

Universiti Malaysia Perlis  9001-00561

Tilgjengelig fra: 2018-10-16 Laget: 2018-10-16 Sist oppdatert: 2018-10-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Hernandez Bennetts, Victor

Søk i DiVA

Av forfatter/redaktør
Hernandez Bennetts, Victor
Av organisasjonen
I samme tidsskrift
Advanced Robotics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 40 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf