oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Affordance detection for task-specific grasping using deep learning
Robotics, Perception, and Learning lab, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.
Robotics, Perception, and Learning lab, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden. (AASS)ORCID-id: 0000-0003-3958-6179
Robotics, Perception, and Learning lab, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.
Robotics, Perception, and Learning lab, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.
2017 (engelsk)Inngår i: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), IEEE conference proceedings, 2017, s. 91-98Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this paper we utilize the notion of affordances to model relations between task, object and a grasp to address the problem of task-specific robotic grasping. We use convolutional neural networks for encoding and detecting object affordances, class and orientation, which we utilize to formulate grasp constraints. Our approach applies to previously unseen objects from a fixed set of classes and facilitates reasoning about which tasks an object affords and how to grasp it for that task. We evaluate affordance detection on full-view and partial-view synthetic data and compute task-specific grasps for objects that belong to ten different classes and afford five different tasks. We demonstrate the feasibility of our approach by employing an optimization-based grasp planner to compute task-specific grasps.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2017. s. 91-98
Serie
IEEE-RAS International Conference on Humanoid Robotics, E-ISSN 2164-0580
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-71556DOI: 10.1109/HUMANOIDS.2017.8239542ISI: 000427350100013Scopus ID: 2-s2.0-85044473077OAI: oai:DiVA.org:oru-71556DiVA, id: diva2:1280228
Konferanse
IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), Birmingham, UK, November 15-17, 2017
Tilgjengelig fra: 2019-01-18 Laget: 2019-01-18 Sist oppdatert: 2019-01-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Stork, Johannes Andreas

Søk i DiVA

Av forfatter/redaktør
Stork, Johannes Andreas

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 83 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf