oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hierarchical fingertip space: A unified framework for grasp planning and in-hand grasp adaptation
Computer Vision and Active Perception Laboratory, Centre for Autonomous Systems, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.
Learning Algorithms and Systems Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Computer Vision and Active Perception Laboratory, Centre for Autonomous Systems, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden. (AASS)ORCID-id: 0000-0003-3958-6179
Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, UK.
Vise andre og tillknytning
2016 (engelsk)Inngår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 32, nr 4, s. 960-972Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present a unified framework for grasp planning and in-hand grasp adaptation using visual, tactile, and proprioceptive feedback. The main objective of the proposed framework is to enable fingertip grasping by addressing problems of changed weight of the object, slippage, and external disturbances. For this purpose we introduce the Hierarchical Fingertip Space as a representation enabling optimization for both efficient grasp synthesis and online finger gaiting. Grasp synthesis is followed by a grasp adaptation step that consists of both grasp force adaptation through impedance control and regrasping/finger gaiting when the former is not sufficient. Experimental evaluation is conducted on an Allegro hand mounted on a Kuka LWR arm.

sted, utgiver, år, opplag, sider
IEEE Geoscience and Remote Sensing Society , 2016. Vol. 32, nr 4, s. 960-972
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-71559DOI: 10.1109/TRO.2016.2588879ISI: 000382754900016Scopus ID: 2-s2.0-84981303220OAI: oai:DiVA.org:oru-71559DiVA, id: diva2:1280235
Forskningsfinansiär
EU, FP7, Seventh Framework Programme
Merknad

Selected for presentation at ICRA 2017.

Tilgjengelig fra: 2019-01-18 Laget: 2019-01-18 Sist oppdatert: 2019-01-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Stork, Johannes Andreas

Søk i DiVA

Av forfatter/redaktør
Stork, Johannes Andreas
I samme tidsskrift
IEEE Transactions on robotics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 151 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf