To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Human Motion Prediction under Social Grouping Constraints
Örebro universitet, Institutionen för naturvetenskap och teknik. Bosch Corporate Research, Stuttgart, Germany. (AASS MRO Lab)
Bosch Corporate Research, Stuttgart, Germany.ORCID-id: 0000-0002-4908-5434
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-0217-9326
Bosch Corporate Research, Stuttgart, Germany.
2018 (engelsk)Inngår i: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018, s. 3358-3364Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Accurate long-term prediction of human motion inpopulated spaces is an important but difficult task for mobile robots and intelligent vehicles. What makes this task challenging is that human motion is influenced by a large variety offactors including the person’s intention, the presence, attributes, actions, social relations and social norms of other surrounding agents, and the geometry and semantics of the environment. In this paper, we consider the problem of computing human motion predictions that account for such factors. We formulate the task as an MDP planning problem with stochastic policies and propose a weighted random walk algorithm in which each agent is locally influenced by social forces from other nearby agents. The novelty of this paper is that we incorporate social grouping information into the prediction process reflecting the soft formation constraints that groups typically impose to their members’ motion. We show that our method makes more accurate predictions than three state-of-the-art methods in terms of probabilistic and geometrical performance metrics.

sted, utgiver, år, opplag, sider
IEEE, 2018. s. 3358-3364
Serie
IEEE International Conference on Intelligent Robots and Systems, ISSN 2153-0858, E-ISSN 2153-0866
Emneord [en]
Human motion prediction, human robot interaction, social forces, human-aware planning
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:oru:diva-71954DOI: 10.1109/IROS.2018.8594258ISI: 000458872703021ISBN: 978-1-5386-8094-0 (digital)ISBN: 978-1-5386-8095-7 (tryckt)OAI: oai:DiVA.org:oru-71954DiVA, id: diva2:1284106
Konferanse
25th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 1-5, 2018
Prosjekter
ILIAD (EC H2020: 732737)
Forskningsfinansiär
EU, Horizon 2020, 732737Tilgjengelig fra: 2019-01-30 Laget: 2019-01-30 Sist oppdatert: 2025-02-09bibliografisk kontrollert

Open Access i DiVA

Human Motion Prediction Under Social Grouping Constraints(2747 kB)1188 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2747 kBChecksum SHA-512
d9ec7f07286d4d6300559a07086afc1db088e408dabc2b14c720dee400983bdec810b4a2908af63c48812f259d11d58c217c548da4cfefd856d2e446e7d7cc29
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Person

Rudenko, AndreyLilienthal, Achim

Søk i DiVA

Av forfatter/redaktør
Rudenko, AndreyPalmieri, LuigiLilienthal, Achim
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1188 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 467 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf