oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Problems of classifying associative or Lie algebras over a field of characteristic not 2 and finite metabelian groups are wild
Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Faculty of Mechanics and Mathematics, Kiev National Taras Shevchenko University, Kiev, Ukraine.ORCID-id: 0000-0001-9110-6182
Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Institute of Mathematics, Kiev, Ukraine.
Vise andre og tillknytning
2009 (engelsk)Inngår i: The Electronic Journal of Linear Algebra, ISSN 1537-9582, E-ISSN 1081-3810, Vol. 18, s. 516-529, artikkel-id 41Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Let F be a field of characteristic different from 2. It is shown that the problems of classifying

(i) local commutative associative algebras over F with zero cube radical,

(ii) Lie algebras over F with central commutator subalgebra of dimension 3, and

(iii) finite p-groups of exponent p with central commutator subgroup of order  are hopeless since each of them contains

• the problem of classifying symmetric bilinear mappings UxU → V , or

• the problem of classifying skew-symmetric bilinear mappings UxU → V ,

in which U and V are vector spaces over F (consisting of p elements for p-groups (iii)) and V is 3-dimensional. The latter two problems are hopeless since they are wild; i.e., each of them contains the problem of classifying pairs of matrices over F up to similarity.

sted, utgiver, år, opplag, sider
2009. Vol. 18, s. 516-529, artikkel-id 41
Emneord [en]
Wild problems, Classification, Associative algebras, Lie algebras, Metabelian groups
HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:oru:diva-74873DOI: 10.13001/1081-3810.1329OAI: oai:DiVA.org:oru-74873DiVA, id: diva2:1332914
Tilgjengelig fra: 2019-06-28 Laget: 2019-06-28 Sist oppdatert: 2019-09-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Dmytryshyn, Andrii

Søk i DiVA

Av forfatter/redaktør
Dmytryshyn, Andrii
I samme tidsskrift
The Electronic Journal of Linear Algebra

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 62 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf