oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process
Department of Mathematics, University of Turku, Turku, Finland; Turku Centre for Biotechnology, Turku, Finland.
Turku Centre for Biotechnology, Turku, Finland.
Turku Centre for Biotechnology, Turku, Finland; VTT Biotechnology, Espoo, Finland.ORCID-id: 0000-0002-2856-9165
Turku Centre for Biotechnology, Turku, Finland.
Vise andre og tillknytning
2007 (engelsk)Inngår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 23, nr 16, s. 2096-2103Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

MOTIVATION: Coexpression networks have recently emerged as a novel holistic approach to microarray data analysis and interpretation. Choosing an appropriate cutoff threshold, above which a gene-gene interaction is considered as relevant, is a critical task in most network-centric applications, especially when two or more networks are being compared.

RESULTS: We demonstrate that the performance of traditional approaches, which are based on a pre-defined cutoff or significance level, can vary drastically depending on the type of data and application. Therefore, we introduce a systematic procedure for estimating a cutoff threshold of coexpression networks directly from their topological properties. Both synthetic and real datasets show clear benefits of our data-driven approach under various practical circumstances. In particular, the procedure provides a robust estimate of individual degree distributions, even from multiple microarray studies performed with different array platforms or experimental designs, which can be used to discriminate the corresponding phenotypes. Application to human T helper cell differentiation process provides useful insights into the components and interactions controlling this process, many of which would have remained unidentified on the basis of expression change alone. Moreover, several human-mouse orthologs showed conserved topological changes in both systems, suggesting their potential importance in the differentiation process.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

sted, utgiver, år, opplag, sider
Oxford University Press, 2007. Vol. 23, nr 16, s. 2096-2103
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-70910DOI: 10.1093/bioinformatics/btm309ISI: 000249818300009PubMedID: 17553854Scopus ID: 2-s2.0-34548550573OAI: oai:DiVA.org:oru-70910DiVA, id: diva2:1345900
Tilgjengelig fra: 2019-08-26 Laget: 2019-08-26 Sist oppdatert: 2019-09-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Oresic, Matej

Søk i DiVA

Av forfatter/redaktør
Oresic, Matej
I samme tidsskrift
Bioinformatics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 25 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf