To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Probabilistic semantic mapping with a virtual sensor for building/nature detection
Örebro universitet, Institutionen för teknik. (AASS)
Department of Computing and Informatics, University of Lincoln, Lincoln, United Kingdom. (Department of Computing and Informatics)
Department of Technology, Örebro University, Örebro, Sweden. (AASS)
Örebro universitet, Institutionen för teknik. (AASS)ORCID-id: 0000-0003-0217-9326
2007 (engelsk)Inngår i: Proceedings of the 2007 IEEE International symposium on computational intelligence in robotics and automation, CIRA 2007, New York, NY, USA: IEEE, 2007, s. 236-242, artikkel-id 4269870Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In human-robot communication it is often important to relate robot sensor readings to concepts used by humans. We believe that access to semantic maps will make it possible for robots to better communicate information to a human operator and vice versa. The main contribution of this paper is a method that fuses data from different sensor modalities, range sensors and vision sensors are considered, to create a probabilistic semantic map of an outdoor environment. The method combines a learned virtual sensor (understood as one or several physical sensors with a dedicated signal processing unit for recognition of real world concepts) for building detection with a standard occupancy map. The virtual sensor is applied on a mobile robot, combining classifications of sub-images from a panoramic view with spatial information (location and orientation of the robot) giving the likely locations of buildings. This information is combined with an occupancy map to calculate a probabilistic semantic map. Our experiments with an outdoor mobile robot show that the method produces semantic maps with correct labeling and an evident distinction between "building" objects from "nature" objects

sted, utgiver, år, opplag, sider
New York, NY, USA: IEEE, 2007. s. 236-242, artikkel-id 4269870
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:oru:diva-4268DOI: 10.1109/CIRA.2007.382870ISI: 000249266100034Scopus ID: 2-s2.0-34948902289ISBN: 978-1-4244-0789-7 (tryckt)OAI: oai:DiVA.org:oru-4268DiVA, id: diva2:138567
Konferanse
International symposium on computational intelligence in robotics and automation, CIRA 2007. 20-23 June 2007, Jacksonville, FL, USA
Merknad

Funding Agency:

Swedish Defence Material Administration

Tilgjengelig fra: 2007-12-13 Laget: 2007-12-13 Sist oppdatert: 2022-08-05bibliografisk kontrollert

Open Access i DiVA

Probabilistic Semantic Mapping with a Virtual Sensor for Building/Nature detection(1697 kB)535 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1697 kBChecksum SHA-512
7ca204b933963b26906487fa00a566cfc8129b047878b4a615ef2b36179f3617578f5dcad71cee65292e501271dca19bd5ab43234a7012bf59cbfd04d9462974
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Persson, MartinLilienthal, Achim J.

Søk i DiVA

Av forfatter/redaktør
Persson, MartinLilienthal, Achim J.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 535 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 763 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf