oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robot system for flexible 3D friction stir welding
Örebro universitet, Institutionen för teknik. (AASS)
2007 (engelsk)Doktoravhandling, monografi (Annet vitenskapelig)
Abstract [en]

Applying Friction Stir Welding (FSW) on complex joint geometries requires not only a machine with 3-dimesional work space capacity, but also a sound definition of the part geometry as well as knowledge about the process. Having a joining process, such as FSW, with great characteristics from both seam quality and environmental perspective, but yet only a minor presence in the manufacturing industry may be related to flexibility and cost issues. The machines that are present in production today are mainly devoted towards one single task, with small if any possibility to apply changes. The use of FSW has therefore mainly been introduced in areas where there are extreme demands on the seam quality, or in large scale production. In order to truly challenge the existing solutions using fusion welding techniques, we propose a solution consisting of an industrial robot, which may solve the machine issues to a great extent as well as the flexibility issues by the implementation of planning and control algorithms.

In this thesis we aim to develop a general methodology towards 3-dimensional FSW on complex objects. This include a robot prototype based on a standard industrial design, modified to carry out the process to a satisfactory extend. The prototype implementation includes software to control the motion of the welding tool, explicitly in the axial direction by the use of force feedback control and implicitly in the plane perpendicular to the axial direction to avoid path deviations. Other tools proposed in this thesis include planning software to create complex paths, both online and off-line, to consider not only the aspects regarding the robot's motion, but also including restraints due to the FSW process.

The evaluation of the proposed system is conducted with an objective to define weldability, in term of alloys, thicknesses and speed, to verify the path planning algorithms for an online as well as an off-line scenario, and to verify the control algorithms response to path deviation due to manipulator compliance, and merge the results from those studies into a discussion on usability of the proposed system and application areas and operations suitable.

sted, utgiver, år, opplag, sider
Örebro: Örebro universitetsbibliotek , 2007. , s. 164
Serie
Örebro Studies in Technology, ISSN 1650-8580 ; 28
Emneord [en]
Friction Stir Welding, robotics
HSV kategori
Forskningsprogram
Reglerteknik
Identifikatorer
URN: urn:nbn:se:oru:diva-4534ISBN: 978-91-7668-563-2 (tryckt)OAI: oai:DiVA.org:oru-4534DiVA, id: diva2:138833
Disputas
2007-12-03, Hörsal T, Örebro universitet, Fakultetsgatan 1, Örebro, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2008-04-02 Laget: 2008-04-02 Sist oppdatert: 2017-10-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Soron, Mikael

Søk i DiVA

Av forfatter/redaktør
Soron, Mikael
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 1629 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf