To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Choosing Feature Selection and Learning Algorithms in QSAR
Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden; AstraZeneca Research and Development, Mölndal, Sweden.
H Lundbeck & Co AS, Valby, Denmark.ORCID-id: 0000-0003-3107-331X
AstraZeneca Research and Development, Mölndal, Sweden.
AstraZeneca Research and Development, Mölndal, Sweden.
2014 (engelsk)Inngår i: Journal of Chemical Information and Modeling, ISSN 1549-9596, E-ISSN 1549-960X, Vol. 54, nr 3, s. 837-843Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Feature selection is an important part of contemporary QSAR analysis. In a recently published paper, we investigated the performance of different feature selection methods in a large number of in silico experiments conducted using real QSAR datasets. However, an interesting question that we did not address is whether certain feature selection methods are better than others in combination with certain learning methods, in terms of producing models with high prediction accuracy. In this report we extend our work from the previous investigation by using four different feature selection methods (wrapper, ReliefF, MARS, and elastic nets), together with eight learners (MARS, elastic net, random forest, SVM, neural networks, multiple linear regression, PLS, kNN) in an empirical investigation to address this question. The results indicate that state-of-the-art learners (random forest, SVM, and neural networks) do not gain prediction accuracy from feature selection, and we found no evidence that a certain feature selection is particularly well-suited for use in combination with a certain learner.

sted, utgiver, år, opplag, sider
Washington DC: American Chemical Society (ACS), 2014. Vol. 54, nr 3, s. 837-843
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-83045DOI: 10.1021/ci400573cISI: 000333478800015PubMedID: 24460242Scopus ID: 2-s2.0-84896980988OAI: oai:DiVA.org:oru-83045DiVA, id: diva2:1439318
Tilgjengelig fra: 2014-05-15 Laget: 2020-06-12 Sist oppdatert: 2024-01-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Eklund, MartinNorinder, Ulf

Søk i DiVA

Av forfatter/redaktør
Eklund, MartinNorinder, Ulf
I samme tidsskrift
Journal of Chemical Information and Modeling

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 72 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf