To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting the Rate of Skin Penetration Using an Aggregated Conformal Prediction Framework
Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
Swetox, Karolinska Institute, Unit of Toxicology Sciences, Södertälje, Sweden; Department of Computer and Systems Sciences, Stockholm University, Kista, Sweden.ORCID-id: 0000-0003-3107-331X
2017 (engelsk)Inngår i: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 14, nr 5, s. 1571-1576Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Skin serves as a drug administration route, and skin permeability of chemicals is of significant interest in the pharmaceutical and cosmetic industries. An aggregated conformal prediction (ACP) framework was used to build models, for predicting the permeation rate (log K-p) of chemical compounds through human skin. The conformal prediction method gives as an output the prediction range at a given level of confidence for each compound, which enables the user to make a more informed decision when, for example, suggesting the next compound to prepare, Predictive models were built using;both the random forest and the support vector machine methods and were based on experimentally derived permeability data on 211 diverse compounds. The derived models were of similar predictive quality as compared to earlier published models but have the extra advantage of not only presenting a single predicted value for each, compound but also a reliable, individually assigned prediction range. The models use calculated descriptors and can quickly predict the skin permeation rate of new compounds.

sted, utgiver, år, opplag, sider
Washington: American Chemical Society (ACS), 2017. Vol. 14, nr 5, s. 1571-1576
Emneord [en]
conformal prediction, skin penetration nonconformist, Scikit Learn, random forest, Support vector machines
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-83150DOI: 10.1021/acs.molpharmaceut.7b00007ISI: 000400633300024PubMedID: 28335598Scopus ID: 2-s2.0-85018439844OAI: oai:DiVA.org:oru-83150DiVA, id: diva2:1440464
Tilgjengelig fra: 2017-06-02 Laget: 2020-06-15 Sist oppdatert: 2020-07-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Norinder, Ulf

Søk i DiVA

Av forfatter/redaktør
Norinder, Ulf
I samme tidsskrift
Molecular Pharmaceutics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 56 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf