To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predictive spreadsheet autocompletion with constraints
KU Leuven, Leuven, Belgium.
KU Leuven, Leuven, Belgium.
KU Leuven, Leuven, Belgium.
KU Leuven, Leuven, Belgium.ORCID-id: 0000-0002-6860-6303
2020 (engelsk)Inngår i: Machine Learning, ISSN 0885-6125, E-ISSN 1573-0565, Vol. 109, nr 2, s. 307-325Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Spreadsheets are arguably the most accessible data-analysis tool and are used by millions of people. Despite the fact that they lie at the core of most business practices, working with spreadsheets can be error prone, usage of formulas requires training and, crucially, spreadsheet users do not have access to state-of-the-art analysis techniques offered by machine learning. To tackle these issues, we introduce the novel task of predictive spreadsheet autocompletion, where the goal is to automatically predict the missing entries in the spreadsheets. This task is highly non-trivial: cells can hold heterogeneous data types and there might be unobserved relationships between their values, such as constraints or probabilistic dependencies. Critically, the exact prediction task itself is not given. We consider a simplified, yet non-trivial, setting and propose a principled probabilistic model to solve it. Our approach combines black-box predictive models specialized for different predictive tasks (e.g., classification, regression) and constraints and formulas detected by a constraint learner, and produces a maximally likely prediction for all target cells that is consistent with the constraints. Overall, our approach brings us one step closer to allowing end users to leverage machine learning in their workflows without writing a single line of code.

sted, utgiver, år, opplag, sider
Springer-Verlag New York, 2020. Vol. 109, nr 2, s. 307-325
Emneord [en]
Spreadsheets Autocompletion, Bayesian Networks, Constraint Learning, Machine Learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-83315DOI: 10.1007/s10994-019-05841-yISI: 000492576000001Scopus ID: 2-s2.0-85074591152OAI: oai:DiVA.org:oru-83315DiVA, id: diva2:1442447
Merknad

Funding Agency:

European Research Council (ERC) 694980

Tilgjengelig fra: 2020-06-17 Laget: 2020-06-17 Sist oppdatert: 2020-11-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

De Raedt, Luc

Søk i DiVA

Av forfatter/redaktør
De Raedt, Luc
I samme tidsskrift
Machine Learning

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 96 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf