To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Relational data factorization
Machine Learning, Department of Computer Science, KU Leuven, Leuven, Belgium.
Machine Learning, Department of Computer Science, KU Leuven, Leuven, Belgium; Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands.
Machine Learning, Department of Computer Science, KU Leuven, Leuven, Belgium.ORCID-id: 0000-0002-6860-6303
2017 (engelsk)Inngår i: Machine Learning, ISSN 0885-6125, E-ISSN 1573-0565, Vol. 106, nr 12, s. 1867-1904Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Motivated by an analogy with matrix factorization, we introduce the problem of factorizing relational data. In matrix factorization, one is given a matrix and has to factorize it as a product of other matrices. In relational data factorization (ReDF), the task is to factorize a given relation as a conjunctive query over other relations, i.e., as a combination of natural join operations. Given a conjunctive query and the input relation, the problem is to compute the extensions of the relations used in the query. Thus, relational data factorization is a relational analog of matrix factorization; it is also a form inverse querying as one has to compute the relations in the query from the result of the query. The result of relational data factorization is neither necessarily unique nor required to be a lossless decomposition of the original relation. Therefore, constraints can be imposed on the desired factorization and a scoring function is used to determine its quality (often similarity to the original data). Relational data factorization is thus a constraint satisfaction and optimization problem. We show how answer set programming can be used for solving relational data factorization problems.

sted, utgiver, år, opplag, sider
Springer, 2017. Vol. 106, nr 12, s. 1867-1904
Emneord [en]
Answer set programming, Inductive logic programming, Pattern mining, Relational data, Factorization, Data mining, Declarative modeling
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-84427DOI: 10.1007/s10994-017-5660-6ISI: 000415881500002Scopus ID: 2-s2.0-85027078830OAI: oai:DiVA.org:oru-84427DiVA, id: diva2:1452323
Konferanse
25th International Conference on Inductive Logic Programming (ILP), Kyoto Univ, Kyoto, Japan, August, 20-22, 2015.
Tilgjengelig fra: 2020-07-06 Laget: 2020-07-06 Sist oppdatert: 2020-08-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

De Raedt, Luc

Søk i DiVA

Av forfatter/redaktør
De Raedt, Luc
I samme tidsskrift
Machine Learning

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 70 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf