To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Generic symmetric matrix polynomials with bounded rank and fixed odd grade
Departamento de Matematicas, Universidad Carlos III de Madrid, Leganes, Spain.
Örebro universitet, Institutionen för naturvetenskap och teknik.ORCID-id: 0000-0001-9110-6182
Departamento de Matematicas, Universidad Carlos III de Madrid, Leganes, Spain.
2020 (engelsk)Inngår i: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 41, nr 3, s. 1033-1058Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We determine the generic complete eigenstructures for n x n complex symmetric matrix polynomials of odd grade d and rank at most r. More precisely, we show that the set of n \times n complex symmetric matrix polynomials of odd grade d, i.e., of degree at most d, and rank at most r is the union of the closures of the left perpendicularrd/2right perpendicular + 1 sets of symmetric matrix polynomials having certain, explicitly described, complete eigenstructures. Then we prove that these sets are open in the set of n x n complex symmetric matrix polynomials of odd grade d and rank at most r. In order to prove the previous results, we need to derive necessary and sufficient conditions for the existence of symmetric matrix polynomials with prescribed grade, rank, and complete eigenstructure in the case where all their elementary divisors are different from each other and of degree 1. An important remark on the results of this paper is that the generic eigenstructures identified in this work are completely different from the ones identified in previous works for unstructured and skew-symmetric matrix polynomials with bounded rank and fixed grade larger than 1, because the symmetric ones include eigenvalues while the others not. This difference requires using new techniques.

sted, utgiver, år, opplag, sider
Society for Industrial and Applied Mathematics , 2020. Vol. 41, nr 3, s. 1033-1058
Emneord [en]
complete eigenstructure, matrix polynomials, symmetry, normal rank, orbits, bundles, genericity, pencils
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-86847DOI: 10.1137/19M1294964ISI: 000576451600004Scopus ID: 2-s2.0-85090908656OAI: oai:DiVA.org:oru-86847DiVA, id: diva2:1479308
Merknad

Funding Agencies:

Ministerio de Economia y Competitividad of Spain  MTM2015-65798-P

Ministerio de Ciencia, Innovacion y Universidades of Spain  MTM2017-90682-REDT PID2019-106362GB-I00

Swedish Foundation for International Cooperation in Research and Higher Education  STINT IB2018-7538

Tilgjengelig fra: 2020-10-26 Laget: 2020-10-26 Sist oppdatert: 2020-10-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Dmytryshyn, Andrii

Søk i DiVA

Av forfatter/redaktør
Dmytryshyn, Andrii
Av organisasjonen
I samme tidsskrift
SIAM Journal on Matrix Analysis and Applications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 93 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf