To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
How to Exploit Structure while Solving Weighted Model Integration Problems
KU Leuven, Leuven, Belgium.
KU Leuven, Leuven, Belgium.
Örebro universitet, Institutionen för naturvetenskap och teknik. KU Leuven, Leuven, Belgium.ORCID-id: 0000-0002-6860-6303
2020 (engelsk)Inngår i: UAI 2019 Proceedings, Association For Uncertainty in Artificial Intelligence (AUAI) , 2020, Vol. 262, s. 744-754Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Weighted model counting (WMC) is a state-of-the-art technique for probabilistic inference in discrete domains. WMC has recently been extended towards weighted model integration (WMI) in order to handle discrete and continuous distributions alike. While a number of WMI solvers have been introduced, their relationships, strengths and weaknesses are not yet well understood. WMI solving consists of two sub-problems: 1) finding convex polytopes; and 2) integrating over them efficiently. We formalize the first step as λ-SMT and discuss what strategies solvers apply to solve both the λ-SMT and the integration problem. This formalization allows us to compare state-of-the-art solvers and their behaviour across different types of WMI problems. Moreover, we identify factorizability of WMI problems as a key property that emerges in the context of probabilistic programming. Problems that can be factorized can be solved more efficiently. However, current solvers exploiting this property restrict themselves to WMI problems with univariate conditions and fully factorizable weight functions. We introduce a new algorithm, F-XSDD, that lifts these restrictions and can exploit factorizability in WMI problems with multivariate conditions and partially factorizable weight functions. Through an empirical evaluation, we show the effectiveness of our approach.

sted, utgiver, år, opplag, sider
Association For Uncertainty in Artificial Intelligence (AUAI) , 2020. Vol. 262, s. 744-754
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-87340Scopus ID: 2-s2.0-85084014815OAI: oai:DiVA.org:oru-87340DiVA, id: diva2:1500089
Konferanse
35th Conference on Uncertainty in Artificial Intelligence (UAI 2019), Tel Aviv, Israel, July 22-25, 2019
Forskningsfinansiär
EU, Horizon 2020, G0D7215NTilgjengelig fra: 2020-11-11 Laget: 2020-11-11 Sist oppdatert: 2020-11-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

ScopusHow to Exploit Structure while Solving Weighted Model Integration Problems

Person

De Raedt, Luc

Søk i DiVA

Av forfatter/redaktør
De Raedt, Luc
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 77 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf