To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adversarial Defense: DGA-Based Botnets and DNS Homographs Detection Through Integrated Deep Learning
Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia.
College of Engineering, IT and Environment, Charles Darwin University, Darwin NT, Australia.
Center for Computational Engineering and Networking, Amrita School of Engineering, Coimbatore Amrita Vishwa Vidyapeetham, Coimbatore, India.
Örebro universitet, Institutionen för naturvetenskap och teknik. (MRO AASS)ORCID-id: 0000-0003-1827-9698
Vise andre og tillknytning
2023 (engelsk)Inngår i: IEEE transactions on engineering management, ISSN 0018-9391, E-ISSN 1558-0040, Vol. 70, nr 1, s. 249-266Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Cybercriminals use domain generation algorithms (DGAs) to prevent their servers from being potentially blacklisted or shut down. Existing reverse engineering techniques for DGA detection is labor intensive, extremely time-consuming, prone to human errors, and have significant limitations. Hence, an automated real-time technique with a high detection rate is warranted in such applications. In this article, we present a novel technique to detect randomly generated domain names and domain name system (DNS) homograph attacks without the need for any reverse engineering or using nonexistent domain (NXDomain) inspection using deep learning. We provide an extensive evaluation of our model over four large, real-world, publicly available datasets. We further investigate the robustness of our model against three different adversarial attacks: DeepDGA, CharBot, and MaskDGA. Our evaluation demonstrates that our method is effectively able to identify DNS homograph attacks and DGAs and also is resilient to common evading cyberattacks. Promising results show that our approach provides a more effective detection rate with an accuracy of 0.99. Additionally, the performance of our model is compared against the most popular deep learning architectures. Our findings highlight the essential need for more robust detection models to counter adversarial learning.

sted, utgiver, år, opplag, sider
IEEE, 2023. Vol. 70, nr 1, s. 249-266
Emneord [en]
Botnet, cybercrime, cyber security, deep learning (DL), DNS attacks, domain generation algorithms (DGAs), domain name system (DNS), malware
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-91572DOI: 10.1109/TEM.2021.3059664ISI: 000732665500001OAI: oai:DiVA.org:oru-91572DiVA, id: diva2:1549031
Tilgjengelig fra: 2021-05-04 Laget: 2021-05-04 Sist oppdatert: 2023-02-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Arunachalam, Ajay

Søk i DiVA

Av forfatter/redaktør
Arunachalam, Ajay
Av organisasjonen
I samme tidsskrift
IEEE transactions on engineering management

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 151 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf