To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Compiling Probabilistic Logic Programs into Sentential Decision Diagrams
Department of Computer Science, KU Leuven, Leuven, Belgium.
Department of Computer Science, KU Leuven, Leuven, Belgium.
Department of Computer Science, KU Leuven, Leuven, Belgium.
Department of Computer Science, KU Leuven, Leuven, Belgium.ORCID-id: 0000-0002-6860-6303
2014 (engelsk)Inngår i: Workshop on Probabilistic Logic Programming (PLP): Proceedings, 2014, Vol. 3, s. 1-10Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Knowledge compilation algorithms transform a probabilistic logic program into a circuit representation that permits efficient probability computation. Knowledge compilation underlies algorithms for exact probabilistic inference and parameter learning in several languages, including ProbLog, PRISM, and LPADs. Developing such algorithms involves a choice, of which circuit language to target, and which compilation algorithm to use. Historically, Binary Decision Diagrams (BDDs) have been a popular target language, whereas recently, deterministic-Decomposable Negation Normal Form (d-DNNF) circuits were shown to outperform BDDs on these tasks. We investigate the use of a new language, called Sentential Decision Diagrams (SDDs), for inference in probabilistic logic programs. SDDs combine desirable properties of BDDs and d-DNNFs. Like BDDs, they support bottom-up compilation and circuit minimization, yet they are a more general and flexible representation. Our preliminary experiments show that compilation to SDD yields smaller circuits and more scalable inference, outperforming the state of the art in ProbLog inference.

sted, utgiver, år, opplag, sider
2014. Vol. 3, s. 1-10
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-92042OAI: oai:DiVA.org:oru-92042DiVA, id: diva2:1558456
Konferanse
1st International Workshop on Probabilistic Logic Programming (PLP 2014), Vienna, Austria, July 17, 2014
Tilgjengelig fra: 2021-05-31 Laget: 2021-05-31 Sist oppdatert: 2021-05-31bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

De Raedt, Luc

Søk i DiVA

Av forfatter/redaktør
De Raedt, Luc

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 70 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf