To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A hybrid optimization algorithm-based feature selection for thyroid disease classifier with rough type-2 fuzzy support vector machine
Computer Science and Engineering, Sona College of Technology, Salem, India.
Computer Science and Engineering, Sona College of Technology, Salem, India.
Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia.
Örebro universitet, Institutionen för naturvetenskap och teknik. (Centre for Applied Autonomous Sensor Systems)ORCID-id: 0000-0003-1827-9698
2022 (engelsk)Inngår i: Expert systems (Print), ISSN 0266-4720, E-ISSN 1468-0394, Vol. 39, nr 1, artikkel-id e12811Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Thyroid hormones are essential for all the metabolic and reproductive activities with significance to growth, and neuron development in the human body. The thyroid hormone dysfunction has many ill consequences, affecting the human population; thereby being a global epidemic. It is noticed that every one in 10 persons suffer from different thyroid disorders in India. In recent years, many researchers have implemented various disease predictive models based on Information and Communications Technology (ICT). Increasing the accuracy of disease classification is a critical and challenging task. To increase the accuracy of classification, in this paper, we propose a hybrid optimization algorithm-based feature selection design for thyroid disease classifier with rough type-2 fuzzy support vector machine. This work uses the hybrid optimization algorithm, which combines the firefly algorithm (FA) and butterfly optimization algorithm (BOA) to select the top-n features. The proposed hybrid firefly butterfly optimization-rough type-2 fuzzy support vector machine (HFBO-RT2FSVM) is evaluated with several key metrics such as specificity, accuracy, and sensitivity. We compare our approach with well-known benchmark methods such as improved grey wolf optimization linear support vector machine (IGWO Linear SVM) and mixed-kernel support vector machine (MKSVM) methods. From the experimental evaluations, we justify that our technique improves the accuracy by large thereby precise in identifying the thyroid disease. HFBO-RT2FSVM model attained an accuracy of 99.28%, having specificity and sensitivity of 98 and 99.2%, respectively.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2022. Vol. 39, nr 1, artikkel-id e12811
Emneord [en]
classification, clinical trial, clustering algorithm, feature selection, fuzzy sets, hormone, machine learning, optimization, support vector machines, thyroid disease
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-94590DOI: 10.1111/exsy.12811ISI: 000697875200001Scopus ID: 2-s2.0-85115291711OAI: oai:DiVA.org:oru-94590DiVA, id: diva2:1597110
Tilgjengelig fra: 2021-09-24 Laget: 2021-09-24 Sist oppdatert: 2022-01-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Arunachalam, Ajay

Søk i DiVA

Av forfatter/redaktør
Arunachalam, Ajay
Av organisasjonen
I samme tidsskrift
Expert systems (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 113 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf