To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High-dimensional conditionally Gaussian state space models with missing data
Purdue University, United States of America.
Örebro universitet, Handelshögskolan vid Örebro Universitet.ORCID-id: 0000-0003-2587-8779
Monash University, Australia.
2023 (engelsk)Inngår i: Journal of Econometrics, ISSN 0304-4076, E-ISSN 1872-6895, Vol. 236, nr 1, artikkel-id 105468Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We develop an efficient sampling approach for handling complex missing data patterns and a large number of missing observations in conditionally Gaussian state space models. Two important examples are dynamic factor models with unbalanced datasets and large Bayesian VARs with variables in multiple frequencies. A key observation underlying the proposed approach is that the joint distribution of the missing data conditional on the observed data is Gaussian. Furthermore, the inverse covariance or precision matrix of this conditional distribution is sparse, and this special structure can be exploited to substantially speed up computations. We illustrate the methodology using two empirical applications. The first application combines quarterly, monthly and weekly data using a large Bayesian VAR to produce weekly GDP estimates. In the second application, we extract latent factors from unbalanced datasets involving over a hundred monthly variables via a dynamic factor model with stochastic volatility.

sted, utgiver, år, opplag, sider
Elsevier, 2023. Vol. 236, nr 1, artikkel-id 105468
Emneord [en]
Mixed-frequency, Unbalanced panel, Vector autoregression, Dynamic factor model, Stochastic volatility
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-106470DOI: 10.1016/j.jeconom.2023.05.005ISI: 001032909000001Scopus ID: 2-s2.0-85161974487OAI: oai:DiVA.org:oru-106470DiVA, id: diva2:1771994
Tilgjengelig fra: 2023-06-21 Laget: 2023-06-21 Sist oppdatert: 2023-08-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Poon, Aubrey

Søk i DiVA

Av forfatter/redaktør
Poon, Aubrey
Av organisasjonen
I samme tidsskrift
Journal of Econometrics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 22 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf