To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Operator Identification in a VR-Based Robot Teleoperation Scenario Using Head, Hands, and Eyes Movement Data
Epiroc Rock Drills AB, Örebro, Sweden; Örebro University, Örebro, Sweden.
Örebro universitet, Institutionen för naturvetenskap och teknik. (Machine Perception & Interaction)ORCID-id: 0000-0001-9293-7711
Örebro universitet, Institutionen för naturvetenskap och teknik.ORCID-id: 0000-0002-0305-3728
2023 (engelsk)Inngår i: Proceedings of the 6th International Workshop on Virtual, Augmented, and Mixed Reality for Human-Robot Interactions (VAM-HRI), 2023, Association for Computing Machinery , 2023Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Remote teleoperation using a Virtual Reality (VR) allows users to experience better degrees of immersion and embodiment. Equipped with a variety of sensors, VR headsets have the potential to offer automatic adaptation to users' personal preferences and modes of operation. However, to achieve this goal VR users must be uniquely identifiable. In this paper, we investigate the possibility of identifying VR users teleoperating a simulated robotic arm, by their forms of interaction with the VR environment. In particular, in addition to standard head and eye data, our framework uses hand tracking data provided by a Leap Motion hand-tracking sensor. Our first set of experiments shows that it is possible to identify users with an accuracy close to 100% by aggregating the sessions data and training/testing with a 70/30 split approach. Last, our second set of experiments show that, even by training and testing on separated sessions, it is still possible to identify users with a satisfactory accuracy of 89,23%.

sted, utgiver, år, opplag, sider
Association for Computing Machinery , 2023.
Emneord [en]
User Identification, Robot Teleoperation, Virtual Reality
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-111187OAI: oai:DiVA.org:oru-111187DiVA, id: diva2:1832230
Konferanse
6th International Workshop on Virtual, Augmented, and Mixed-Reality for Human-Robot Interactions (VAM-HRI '23), Stockholm, Sweden, March 13-16, 2023
Tilgjengelig fra: 2024-01-29 Laget: 2024-01-29 Sist oppdatert: 2024-01-31bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Giaretta, AlbertoKiselev, Andrey

Søk i DiVA

Av forfatter/redaktør
Giaretta, AlbertoKiselev, Andrey
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 107 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf