To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Receding Horizon Online Trajectory Generation Method for Time-Efficient Path Tracking with Dynamic Factors
School of Intelligent Engineering and Automation, Beijing University of Posts and Telecommunications, Beijing, China .
Örebro universitet, Institutionen för naturvetenskap och teknik. (Center for Applied Autonomous Sensor Systems)ORCID-id: 0000-0002-0334-2554
Örebro universitet, Institutionen för naturvetenskap och teknik. (Center for Applied Autonomous Sensor Systems)ORCID-id: 0000-0001-8119-0843
2024 (engelsk)Inngår i: IEEE/ASME transactions on mechatronics, ISSN 1083-4435, E-ISSN 1941-014XArtikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

Current path-tracking trajectory planning methods intrinsically suffer from a heavy computational burden, hindering them from modern autonomous robotic applications requiring real-time reactivity. To achieve flexible, accurate, and efficient motions, this article proposes a real-time trajectory planning framework for time-efficient path tracking. First, a receding horizon method is designed that generates local trajectories online while considering the global kinematic constraints. Second, an analytical closed-form method is developed for calculating the local time-minimal trajectory. Third, the models and solutions are established for handling dynamic factors. Compared to existing methods, this method exhibits lower computational complexity and can deal with path changes during motion executions while maintaining tracking accuracy and time efficiency. Experiments using Franka-Emika Panda robots are conducted in handover scenarios involving unpredictable dynamic obstacles and human interventions. The results demonstrate the low computational overhead. The robot flexibly reacts to online path changes, maintaining tracking accuracy while marginally compromising time efficiency.

sted, utgiver, år, opplag, sider
IEEE, 2024.
Emneord [en]
Autonomous robots, collision avoidance, motion planning, trajectory optimization
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-117286DOI: 10.1109/TMECH.2024.3477006ISI: 001342305500001OAI: oai:DiVA.org:oru-117286DiVA, id: diva2:1912030
Merknad

This work was supported in part by the National Natural Science Foundation of China under Grant 62303067, and in part by the Fundamental Research Funds for the Central Universities under Grant 2023RC60.

Tilgjengelig fra: 2024-11-11 Laget: 2024-11-11 Sist oppdatert: 2025-02-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Sun, DaLiao, Qianfang

Søk i DiVA

Av forfatter/redaktør
Sun, DaLiao, Qianfang
Av organisasjonen
I samme tidsskrift
IEEE/ASME transactions on mechatronics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 34 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf