To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimating predictive variance for statistical gas distribution modelling
Örebro universitet, Akademin för naturvetenskap och teknik. (AASS Learning Systems Lab)ORCID-id: 0000-0003-0217-9326
Örebro universitet, Akademin för naturvetenskap och teknik. (AASS Learning Systems Lab)
Örebro universitet, Akademin för naturvetenskap och teknik. (AASS Learning Systems Lab)
2009 (engelsk)Inngår i: Olfaction and electronic nose: proceedings / [ed] Matteo Pardo, Giorgio Sberveglieri, Melville, USA: American Institute of Physics (AIP), 2009, s. 65-68Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.

sted, utgiver, år, opplag, sider
Melville, USA: American Institute of Physics (AIP), 2009. s. 65-68
Serie
AIP conference proceedings, ISSN 0094-243X ; 1137
Emneord [en]
Gas distribution modelling, gas sensing, mobile robot olfaction, density estimation, model evaluation
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:oru:diva-8443DOI: 10.1063/1.3156628ISI: 000268929400014Scopus ID: 2-s2.0-70450162840ISBN: 978-0-7354-0674-2 (tryckt)OAI: oai:DiVA.org:oru-8443DiVA, id: diva2:274903
Konferanse
13th International Symposium on Olfaction and the Electronic Nose, Brescia, Italy, April 15-17, 2009
Prosjekter
EU FP6 STREP DustbotEU FP7 DiademTilgjengelig fra: 2009-11-08 Laget: 2009-11-02 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

fulltekst(398 kB)1432 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 398 kBChecksum SHA-512
e907197a7f0b9763caf0292591295051f31f2fd7b8307df34fab2ed230f96a0e723ddc0bc4375242ef5a4e9836ffdec2ce0294a950b30ee168e460b89bf0556f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Lilienthal, Achim J.Asadi, SaharReggente, Matteo

Søk i DiVA

Av forfatter/redaktør
Lilienthal, Achim J.Asadi, SaharReggente, Matteo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1432 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 1121 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf