oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Consensus self-organized models for fault detection (COSMO)
Örebro universitet, Akademin för naturvetenskap och teknik.ORCID-id: 0000-0001-5163-2997
Volvo, Gothenburg, Sweden.
2011 (engelsk)Inngår i: Engineering applications of artificial intelligence, ISSN 0952-1976, E-ISSN 1873-6769, Vol. 24, nr 5, s. 833-839Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Methods for equipment monitoring are traditionally constructed from specific sensors and/or knowledge collected prior to implementation on the equipment. A different approach is presented here that builds up knowledge over time by exploratory search among the signals available on the internal field bus system and comparing the observed signal relationships among a group of equipment that perform similar tasks. The approach is developed for the purpose of increasing vehicle uptime, and is therefore demonstrated in the case of a city bus and a heavy duty truck. However, it also works fine for smaller mechatronic systems like computer hard-drives. The approach builds on an onboard self-organized search for models that capture relations among signal values on the vehicles' data buses, combined with a limited bandwidth telematics gateway and an off-line server application where the parameters of the self-organized models are compared. The presented approach represents a new look at error detection in commercial mechatronic systems, where the normal behavior of a system is actually found under real operating conditions, rather than the behavior observed in a number of laboratory tests or test-drives prior to production of the system. The approach has potential to be the basis for a self-discovering system for general purpose fault detection and diagnostics. (c) 2011 Elsevier Ltd. All rights reserved.

sted, utgiver, år, opplag, sider
2011. Vol. 24, nr 5, s. 833-839
HSV kategori
Forskningsprogram
Datorteknik
Identifikatorer
URN: urn:nbn:se:oru:diva-18682DOI: 10.1016/j.engappai.2011.03.002ISI: 000291524200010OAI: oai:DiVA.org:oru-18682DiVA, id: diva2:444816
Tilgjengelig fra: 2011-09-30 Laget: 2011-09-29 Sist oppdatert: 2019-12-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Rögnvaldsson, Thorsteinn

Søk i DiVA

Av forfatter/redaktør
Rögnvaldsson, Thorsteinn
Av organisasjonen
I samme tidsskrift
Engineering applications of artificial intelligence

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 89 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf