To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Virtual sensors for human concepts: building detection by an outdoor mobile robot
Örebro universitet, Institutionen för teknik. (AASS)
Department of Computing and Informatics, University of Lincoln, Lincoln, UK.
Örebro universitet, Institutionen för teknik. (AASS)ORCID-id: 0000-0003-0217-9326
2007 (engelsk)Inngår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 55, nr 5, s. 383-390Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In human-robot communication it is often important to relate robot sensor readings to concepts used by humans. We suggest the use of a virtual sensor (one or several physical sensors with a dedicated signal processing unit for the recognition of real world concepts) and a method with which the virtual sensor can learn from a set of generic features. The virtual sensor robustly establishes the link between sensor data and a particular human concept. In this work, we present a virtual sensor for building detection that uses vision and machine learning to classify the image content in a particular direction as representing buildings or non-buildings. The virtual sensor is trained on a diverse set of image data, using features extracted from grey level images. The features are based on edge orientation, the configurations of these edges, and on grey level clustering. To combine these features, the AdaBoost algorithm is applied. Our experiments with an outdoor mobile robot show that the method is able to separate buildings from nature with a high classification rate, and to extrapolate well to images collected under different conditions. Finally, the virtual sensor is applied on the mobile robot, combining its classifications of sub-images from a panoramic view with spatial information (in the form of location and orientation of the robot) in order to communicate the likely locations of buildings to a remote human operator. (c) 2006 Elsevier B.V. All rights reserved.

sted, utgiver, år, opplag, sider
Amsterdam, Netherlands: Elsevier, 2007. Vol. 55, nr 5, s. 383-390
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:oru:diva-19894DOI: 10.1016/j.robot.2006.12.002ISI: 000246609500004Scopus ID: 2-s2.0-34247125634OAI: oai:DiVA.org:oru-19894DiVA, id: diva2:447970
Konferanse
Workshop on From Sensors to Human Spatial Concepts, Beijing, Peoples R. China, Oct., 2006
Tilgjengelig fra: 2011-10-13 Laget: 2011-10-12 Sist oppdatert: 2018-06-12bibliografisk kontrollert

Open Access i DiVA

Virtual Sensors for Human Concepts: Building Detection by an Outdoor Mobile Robot(481 kB)494 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 481 kBChecksum SHA-512
fe100f60f526d5e88152abae20b9e3067b92b461c2444780e57d18e8a7812c41b681da4ea076d0aeaf816ffa453ded0355032752f2e3009c9991a8d4c17ddcbd
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Persson, MartinLilienthal, Achim J.

Søk i DiVA

Av forfatter/redaktør
Persson, MartinLilienthal, Achim J.
Av organisasjonen
I samme tidsskrift
Robotics and Autonomous Systems

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 494 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 723 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf