oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Tissue-based Alzheimer gene expression markers-comparison of multiple machine learning approaches and investigation of redundancy in small biomarker sets
Institute of Computer Science, University of Osnabrück, Osnabrück, Germany; Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, Germany.
Department of Intelligent Systems, Jozef Stefan Institute, Ljubljana, Slovenia.
Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, Germany.
Leibniz Institute for Farm Animal Biology (FBN Dummersdorf), Dummerstorf, Germany.ORCID-id: 0000-0002-7173-5579
Vise andre og tillknytning
2012 (engelsk)Inngår i: BMC Bioinformatics, ISSN 1471-2105, E-ISSN 1471-2105, Vol. 13, nr 1, artikkel-id 266Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background: Alzheimer's disease has been known for more than 100 years and the underlying molecular mechanisms are not yet completely understood. The identification of genes involved in the processes in Alzheimer affected brain is an important step towards such an understanding. Genes differentially expressed in diseased and healthy brains are promising candidates.

Results: Based on microarray data we identify potential biomarkers as well as biomarker combinations using three feature selection methods: information gain, mean decrease accuracy of random forest and a wrapper of genetic algorithm and support vector machine (GA/SVM). Information gain and random forest are two commonly used methods. We compare their output to the results obtained from GA/SVM. GA/SVM is rarely used for the analysis of microarray data, but it is able to identify genes capable of classifying tissues into different classes at least as well as the two reference methods.

Conclusion: Compared to the other methods, GA/SVM has the advantage of finding small, less redundant sets of genes that, in combination, show superior classification characteristics. The biological significance of the genes and gene pairs is discussed.

sted, utgiver, år, opplag, sider
London, UK: BioMed Central, 2012. Vol. 13, nr 1, artikkel-id 266
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-40614DOI: 10.1186/1471-2105-13-266ISI: 000315045800001PubMedID: 23066814Scopus ID: 2-s2.0-84867384165OAI: oai:DiVA.org:oru-40614DiVA, id: diva2:777922
Tilgjengelig fra: 2015-01-09 Laget: 2015-01-09 Sist oppdatert: 2018-05-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Repsilber, Dirk

Søk i DiVA

Av forfatter/redaktør
Repsilber, Dirk
I samme tidsskrift
BMC Bioinformatics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 68 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf