oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Support relation analysis and decision making for safe robotic manipulation tasks
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0002-2392-7146
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-0217-9326
2015 (engelsk)Inngår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 71, nr SI, s. 99-117Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this article, we describe an approach to address the issue of automatically building and using high-level symbolic representations that capture physical interactions between objects in static configurations. Our work targets robotic manipulation systems where objects need to be safely removed from piles that come in random configurations. We assume that a 3D visual perception module exists so that objects in the piles can be completely or partially detected. Depending on the outcome of the perception, we divide the issue into two sub-issues: 1) all objects in the configuration are detected; 2) only a subset of objects are correctly detected. For the first case, we use notions from geometry and static equilibrium in classical mechanics to automatically analyze and extract act and support relations between pairs of objects. For the second case, we use machine learning techniques to estimate the probability of objects supporting each other. Having the support relations extracted, a decision making process is used to identify which object to remove from the configuration so that an expected minimum cost is optimized. The proposed methods have been extensively tested and validated on data sets generated in simulation and from real world configurations for the scenario of unloading goods from shipping containers.

sted, utgiver, år, opplag, sider
Amsterdam: Elsevier, 2015. Vol. 71, nr SI, s. 99-117
Emneord [en]
Scene analysis, Machine learning, Decision making, World models, Robotic manipulation
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-40703DOI: 10.1016/j.robot.2014.12.014ISI: 000357146000010OAI: oai:DiVA.org:oru-40703DiVA, id: diva2:778509
Prosjekter
Cognitive Robot for Automation of Logistic Processes (RobLog)
Tilgjengelig fra: 2015-01-10 Laget: 2015-01-10 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Mojtahedzadeh, RasoulBouguerra, AbdelbakiSchaffernicht, ErikLilienthal, Achim J

Søk i DiVA

Av forfatter/redaktør
Mojtahedzadeh, RasoulBouguerra, AbdelbakiSchaffernicht, ErikLilienthal, Achim J
Av organisasjonen
I samme tidsskrift
Robotics and Autonomous Systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 476 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf