oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Reconstructing gas distribution maps via an adaptive sparse regularization algorithm
Örebro universitet, Institutionen för naturvetenskap och teknik. (Mathematics)ORCID-id: 0000-0003-4023-6352
Örebro universitet, Institutionen för naturvetenskap och teknik.ORCID-id: 0000-0003-0332-2315
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS)ORCID-id: 0000-0001-5061-5474
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS)ORCID-id: 0000-0002-0804-8637
2016 (engelsk)Inngår i: Inverse Problems in Science and Engineering, ISSN 1741-5977, E-ISSN 1741-5985, Vol. 24, nr 7, s. 1186-1204Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, we present an algorithm to be used by an inspectionrobot to produce a gas distribution map and localize gas sources ina large complex environment. The robot, equipped with a remotegas sensor, measures the total absorption of a tuned laser beam andreturns integral gas concentrations. A mathematical formulation ofsuch measurement facility is a sequence of Radon transforms,which isa typical ill-posed problem. To tackle the ill-posedness, we developa new regularization method based on the sparse representationproperty of gas sources and the adaptive finite-element method. Inpractice, only a discrete model can be applied, and the quality ofthe gas distributionmap depends on a detailed 3-D world model thatallows us to accurately localize the robot and estimate the paths of thelaser beam. In this work, using the positivity ofmeasurements and theprocess of concentration, we estimate the lower and upper boundsof measurements and the exact continuous model (mapping fromgas distribution to measurements), and then create a more accuratediscrete model of the continuous tomography problem. Based onadaptive sparse regularization, we introduce a new algorithm thatgives us not only a solution map but also a mesh map. The solutionmap more accurately locates gas sources, and the mesh map providesthe real gas distribution map. Moreover, the error estimation of theproposed model is discussed. Numerical tests for both the syntheticproblem and practical problem are given to show the efficiency andfeasibility of the proposed algorithm.

sted, utgiver, år, opplag, sider
Taylor & Francis, 2016. Vol. 24, nr 7, s. 1186-1204
Emneord [en]
Gas distribution map, source localization, Radon transform, ill-posed inverse problem, adaptive sparse regularization
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
URN: urn:nbn:se:oru:diva-47923DOI: 10.1080/17415977.2015.1130039ISI: 000381017200004Scopus ID: 2-s2.0-84953226224OAI: oai:DiVA.org:oru-47923DiVA, id: diva2:900402
Merknad

Funding Agency:

Gasbot project 8140

Tilgjengelig fra: 2016-02-04 Laget: 2016-02-04 Sist oppdatert: 2017-11-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Zhang, YeGulliksson, MårtenHernandez Bennetts, VictorSchaffernicht, Erik

Søk i DiVA

Av forfatter/redaktør
Zhang, YeGulliksson, MårtenHernandez Bennetts, VictorSchaffernicht, Erik
Av organisasjonen
I samme tidsskrift
Inverse Problems in Science and Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 581 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf