oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Topology optimization of hyperelastic bodies including non-zero prescribed displacements
Department of Management and Engineering, The Institute of Technology, Linköping University, Linköping, Sweden.
Department of Mechanical Engineering, Jönköping University, Jönköping, Sweden.ORCID-id: 0000-0001-6821-5727
2013 (engelsk)Inngår i: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488, Vol. 47, nr 1, s. 37-48Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Stiffness topology optimization is usually based on a state problem of linear elasticity, and there seems to be little discussion on what is the limit for such a small rotation-displacement assumption. We show that even for gross rotations that are in all practical aspects small (<3 deg), topology optimization based on a large deformation theory might generate different design concepts compared to what is obtained when small displacement linear elasticity is used. Furthermore, in large rotations, the choice of stiffness objective (potential energy or compliance), can be crucial for the optimal design concept. The paper considers topology optimization of hyperelastic bodies subjected simultaneously to external forces and prescribed non-zero displacements. In that respect it generalizes a recent contribution of ours to large deformations, but we note that the objectives of potential energy and compliance are no longer equivalent in the non-linear case. We use seven different hyperelastic strain energy functions and find that the numerical performance of the Kirchhoff–St.Venant model is in general significantly worse than the performance of the other six models, which are all modifications of this classical law that are equivalent in the limit of infinitesimal strains, but do not contain the well-known collapse in compression. Numerical results are presented for two different problem settings.

sted, utgiver, år, opplag, sider
Springer, 2013. Vol. 47, nr 1, s. 37-48
Emneord [en]
Hyperelasticity, Potential energy, Compliance, Optimality criteria
HSV kategori
Forskningsprogram
Maskinteknik
Identifikatorer
URN: urn:nbn:se:oru:diva-48269DOI: 10.1007/s00158-012-0819-zISI: 000312878800004Scopus ID: 2-s2.0-84871979511OAI: oai:DiVA.org:oru-48269DiVA, id: diva2:904430
Merknad

Funding Agency:

Swedish Foundation for Strategic Research through the ProViking programme

Tilgjengelig fra: 2012-01-26 Laget: 2016-02-15 Sist oppdatert: 2017-11-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Strömberg, Niclas

Søk i DiVA

Av forfatter/redaktør
Strömberg, Niclas
I samme tidsskrift
Structural and multidisciplinary optimization (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 513 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf