oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards visual mapping in industrial environments: a heterogeneous task-specific and saliency driven approach
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS)ORCID-id: 0000-0003-4692-5415
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS)ORCID-id: 0000-0002-2953-1564
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS)ORCID-id: 0000-0002-9477-4044
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS)ORCID-id: 0000-0003-0217-9326
2016 (engelsk)Inngår i: 2016 IEEE International Conference on Robotics and Automation (ICRA), Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 5766-5773, artikkel-id 7487800Konferansepaper, Publicerat paper (Fagfellevurdert)
Resurstyp
Text
Abstract [en]

The highly percipient nature of human mind in avoiding sensory overload is a crucial factor which gives human vision an advantage over machine vision, the latter has otherwise powerful computational resources at its disposal given today’s technology. This stresses the need to focus on methods which extract a concise representation of the environment inorder to approach a complex problem such as visual mapping. This article is an attempt of creating a mapping system, which proposes an architecture that combines task-specific and saliency driven approaches. The proposed method is implemented on a warehouse robot. The proposed solution provide a priority framework which enables an industrial robot to build a concise visual representation of the environment. The method is evaluated on data collected by a RGBD sensor mounted on a fork-lift robot and shows promise for addressing visual mapping problems in industrial environments.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2016. s. 5766-5773, artikkel-id 7487800
Serie
IEEE International Conference on Robotics and Automation, ISSN 1050-4729
Emneord [en]
Image color analysis, Object detection, Robot sensing systems, Service robots, Training, Visualization
HSV kategori
Forskningsprogram
Datavetenskap; Datoriserad bildanalys; Datalogi; Datateknik; Datorteknik
Identifikatorer
URN: urn:nbn:se:oru:diva-51234DOI: 10.1109/ICRA.2016.7487800ISI: 000389516204136Scopus ID: 2-s2.0-84977586825ISBN: 978-146738026-3 (tryckt)OAI: oai:DiVA.org:oru-51234DiVA, id: diva2:945980
Konferanse
IEEE International Conference on Robotics and Automation (ICRA, Stockholm, Sweden, May 16-21, 2016
Forskningsfinansiär
Knowledge FoundationTilgjengelig fra: 2016-07-04 Laget: 2016-07-04 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

fulltext(2765 kB)261 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2765 kBChecksum SHA-512
6ea01c14f0a2bae63532bf8478544450a16f90307adb69030ea9b09750dd8eb3e0f5566cc9a8617881e6c31289df68e07a3ae0d6d7cbc5070b42546caaa36890
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Siddiqui, J. RafidAndreasson, HenrikDriankov, DimiterLilienthal, Achim J.

Søk i DiVA

Av forfatter/redaktør
Siddiqui, J. RafidAndreasson, HenrikDriankov, DimiterLilienthal, Achim J.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 261 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 485 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf