oru.sePublikationer
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Establishing and implementing data collaborations for public good: A critical factor analysis to scale up the practice
Örebro universitet, Handelshögskolan vid Örebro Universitet. Section ICT, Faculty of Technology, Policy and Management, Delft University of Technology, The Netherlands .
2020 (Engelska)Ingår i: Information Polity, ISSN 1570-1255, E-ISSN 1875-8754, Vol. 25, nr 1, s. 3-24Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Data analytics for public good has become a hot topic thanks to the inviting opportunities to utilize ‘new’ sources of data, such as social media insights, call detail records, satellite imagery etc. These data are sometimes shared by the private sector as part of corporate social responsibility, especially in situations of urgency, such as in case of a natural disaster. Such partnerships can be termed as ‘data collaboratives’. While experimentation grows, little is known about how such collaborations are formed and implemented. In this paper, we investigate the factors which are influential and contribute to a successful data collaborative using the Critical Success Factor (CSF) approach. As a result, we propose (1) a framework of CSFs which provides a holistic view of elements coming into play when a data collaborative is formed and (2) a list of Top 15 factors which highlights the elements which typically have a greater influence over the success of the partnership. We validated our findings in two case studies and discussed three broad factors which were found to be critical for the formation of data collaboratives: value proposition, trust, and public pressure. Our results can be used to help organizations prioritize and distribute resources accordingly when engaging in a data collaborative.

Ort, förlag, år, upplaga, sidor
IOS Press, 2020. Vol. 25, nr 1, s. 3-24
Nyckelord [en]
Critical success factors, data driven social partnership, data sharing, cross sector partnership, data innovation, inter-organizational collaboration
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning
Identifikatorer
URN: urn:nbn:se:oru:diva-79224DOI: 10.3233/IP-180117ISI: 000521939400002Scopus ID: 2-s2.0-85083093277OAI: oai:DiVA.org:oru-79224DiVA, id: diva2:1386354
Forskningsfinansiär
Vetenskapsrådet, 2015-06563Tillgänglig från: 2020-01-17 Skapad: 2020-01-17 Senast uppdaterad: 2020-05-08Bibliografiskt granskad

Open Access i DiVA

Establishing and implementing data collaborations for public good: A critical factor analysis to scale up the practice(497 kB)74 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 497 kBChecksumma SHA-512
e2b11985cdacfa297744123f12e16239d0e4f8008b694282fa99ff19e5ae0b8c48458954e2c7c6b7f8538a63e35238498543e4628c7d2c45f37b571cf2be0164
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Susha, Iryna

Sök vidare i DiVA

Av författaren/redaktören
Susha, Iryna
Av organisationen
Handelshögskolan vid Örebro Universitet
I samma tidskrift
Information Polity
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 74 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 74 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf