oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Development and validation of a skin fibroblast biomarker profile for schizophrenic patients
Örebro universitet, Institutionen för medicinska vetenskaper. Metabolic Engineering and Bioinformatics Group, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
Metabolic Engineering and Bioinformatics Group, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; e-NIOS Applications PC, Athens, Greece .
Örebro universitet, Institutionen för hälsovetenskaper.ORCID-id: 0000-0001-8102-1804
Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Annan medicinsk grundvetenskap
Forskningsämne
Biomedicin
Identifikatorer
URN: urn:nbn:se:oru:diva-53538OAI: oai:DiVA.org:oru-53538DiVA, id: diva2:1047263
Tillgänglig från: 2016-11-17 Skapad: 2016-11-17 Senast uppdaterad: 2018-01-13Bibliografiskt granskad
Ingår i avhandling
1. Integration of functional genomics and data mining methodologies in the study of bipolar disorder and schizophrenia
Öppna denna publikation i ny flik eller fönster >>Integration of functional genomics and data mining methodologies in the study of bipolar disorder and schizophrenia
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Bipolar disorder and schizophrenia are two severe psychiatric disorders characterized by a complex genetic basis, coupled to the influence of environmental factors. In this thesis, functional genomic analysis tools were used for the study of the underlying pathophysiology of these disorders, focusing on gene expression and function on a global scale with the application of high-throughput methods. Datasets from public databases regarding transcriptomic data of postmortem brain and skin fibroblast cells of patients with either schizophrenia or bipolar disorder were analyzed in order to identify differentially expressed genes. In addition, fibroblast cells of bipolar disorder patients obtained from the Biobank of the Neuropsychiatric Research Laboratory of Örebro University were cultured, RNA was extracted and used for microarray analysis. In order to gain deeper insight into the biological mechanisms related to the studied psychiatric disorders, the differentially expressed gene lists were subjected to pathway and target prioritization analysis, using proprietary tools developed by the group of Metabolic Engineering and Bioinformatics, of the National Hellenic Research Foundation, thus indicating various cellular processes as significantly altered. Many of the molecular processes derived from the analysis of the postmortem brain data of schizophrenia and bipolar disorder were also identified in the skin fibroblast cells. Additionally, through the use of machine learning methods, gene expression data from patients with schizophrenia were exploited for the identification of a subset of genes with discriminative ability between schizophrenia and healthy control subjects. Interestingly, a set of genes with high separating efficiency was derived from fibroblast gene expression profiling. This thesis suggests the suitability of skin fibroblasts as a reliable model for the diagnostic evaluation of psychiatric disorders and schizophrenia in particular, through the construction of promising machine-learning based classification models, exploiting gene expression data from peripheral tissues.

Ort, förlag, år, upplaga, sidor
Örebro: Örebro university, 2016. s. 98
Serie
Örebro Studies in Medicine, ISSN 1652-4063 ; 153
Nyckelord
Bipolar Disorder, Schizophrenia, Fibroblasts, DNA Microarrays, Machine Learning, Functional Analysis, Gene Expression, Transcriptomics
Nationell ämneskategori
Annan medicinsk grundvetenskap
Identifikatorer
urn:nbn:se:oru:diva-52644 (URN)978-91-7529-168-0 (ISBN)
Disputation
2016-12-09, Campus USÖ, hörsal C3, Södra Grev Rosengatan 32, Örebro, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-09-28 Skapad: 2016-09-28 Senast uppdaterad: 2018-01-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Logotheti, MarianthiVenizelos, Nikolaos

Sök vidare i DiVA

Av författaren/redaktören
Logotheti, MarianthiVenizelos, Nikolaos
Av organisationen
Institutionen för medicinska vetenskaperInstitutionen för hälsovetenskaper
Annan medicinsk grundvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 390 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf