Learning context-aware mobile robot navigation in home environments Visa övriga samt affilieringar
2014 (Engelska) Ingår i: IISA 2014: The 5th International Conference on Information, Intelligence, Systems and Applications, New York: Institute of Electrical and Electronics Engineers (IEEE), 2014, s. 57-62, artikel-id 6878733Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]
We present an approach to make planning adaptive in order to enable context-aware mobile robot navigation. We integrate a model-based planner with a distributed learning system based on reservoir computing, to yield personalized planning and resource allocations that account for user preferences and environmental changes. We demonstrate our approach in a real robot ecology, and show that the learning system can effectively exploit historical data about navigation performance to modify the models in the planner, without any prior information oncerning the phenomenon being modeled. The plans produced by the adapted CL fail more rarely than the ones generated by a non-adaptive planner. The distributed learning system handles the new learning task autonomously, and is able to automatically identify the sensorial information most relevant for the task, thus reducing the communication and computational overhead of the predictive task.
Ort, förlag, år, upplaga, sidor New York: Institute of Electrical and Electronics Engineers (IEEE), 2014. s. 57-62, artikel-id 6878733
Nationell ämneskategori
Robotik och automation Datavetenskap (datalogi)
Forskningsämne Datavetenskap; Datavetenskap
Identifikatorer URN: urn:nbn:se:oru:diva-55288 DOI: 10.1109/IISA.2014.6878733 ISI: 000345861900012 Scopus ID: 2-s2.0-84906748619 OAI: oai:DiVA.org:oru-55288 DiVA, id: diva2:1071066
Konferens 5th International Conference on Information, Intelligence, Systems and Applications (IISA 2014), Chania, Crete, Greece, July 7-9, 2014
Projekt EU FP7 RUBICON
Forskningsfinansiär EU, FP7, Sjunde ramprogrammet, 269914 2017-02-032017-02-032025-02-05 Bibliografiskt granskad