oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Non-Parametric Spatial Context Structure Learning for Autonomous Understanding of Human Environments
RPL (CVAP), KTH Royal Institute of Technology, Stockholm, Sweden.
RPL (CVAP), KTH Royal Institute of Technology, Stockholm, Sweden. (AASS)ORCID-id: 0000-0003-3958-6179
RPL (CVAP), KTH Royal Institute of Technology, Stockholm, Sweden.
2017 (Engelska)Ingår i: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), IEEE conference proceedings, 2017, s. 1317-1324Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Autonomous scene understanding by object classification today, crucially depends on the accuracy of appearance based robotic perception. However, this is prone to difficulties in object detection arising from unfavourable lighting conditions and vision unfriendly object properties. In our work, we propose a spatial context based system which infers object classes utilising solely structural information captured from the scenes to aid traditional perception systems. Our system operates on novel spatial features (IFRC) that are robust to noisy object detections; It also caters to on-the-fly learned knowledge modification improving performance with practise. IFRC are aligned with human expression of 3D space, thereby facilitating easy HRI and hence simpler supervised learning. We tested our spatial context based system to successfully conclude that it can capture spatio structural information to do joint object classification to not only act as a vision aide, but sometimes even perform on par with appearance based robotic vision.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2017. s. 1317-1324
Serie
International Symposium on Robot and Human Interactive Communication, ISSN 1944-9437
Nationell ämneskategori
Datavetenskap (datalogi) Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:oru:diva-71558DOI: 10.1109/ROMAN.2017.8172475ISI: 000427262400205Scopus ID: 2-s2.0-85045741190OAI: oai:DiVA.org:oru-71558DiVA, id: diva2:1280230
Konferens
26th IEEE International Symposium on Robot and Human Interactive Communication, Lisbon, Portugal, August 28 - September 1, 2018
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 600623Vetenskapsrådet, C0475401Tillgänglig från: 2019-01-18 Skapad: 2019-01-18 Senast uppdaterad: 2019-01-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Stork, Johannes Andreas

Sök vidare i DiVA

Av författaren/redaktören
Stork, Johannes Andreas
Datavetenskap (datalogi)Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 67 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf