oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hierarchical fingertip space: A unified framework for grasp planning and in-hand grasp adaptation
Computer Vision and Active Perception Laboratory, Centre for Autonomous Systems, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.
Learning Algorithms and Systems Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Computer Vision and Active Perception Laboratory, Centre for Autonomous Systems, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden. (AASS)ORCID-id: 0000-0003-3958-6179
Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, UK.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 32, nr 4, s. 960-972Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present a unified framework for grasp planning and in-hand grasp adaptation using visual, tactile, and proprioceptive feedback. The main objective of the proposed framework is to enable fingertip grasping by addressing problems of changed weight of the object, slippage, and external disturbances. For this purpose we introduce the Hierarchical Fingertip Space as a representation enabling optimization for both efficient grasp synthesis and online finger gaiting. Grasp synthesis is followed by a grasp adaptation step that consists of both grasp force adaptation through impedance control and regrasping/finger gaiting when the former is not sufficient. Experimental evaluation is conducted on an Allegro hand mounted on a Kuka LWR arm.

Ort, förlag, år, upplaga, sidor
IEEE Geoscience and Remote Sensing Society , 2016. Vol. 32, nr 4, s. 960-972
Nationell ämneskategori
Datavetenskap (datalogi) Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:oru:diva-71559DOI: 10.1109/TRO.2016.2588879ISI: 000382754900016Scopus ID: 2-s2.0-84981303220OAI: oai:DiVA.org:oru-71559DiVA, id: diva2:1280235
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet
Anmärkning

Selected for presentation at ICRA 2017.

Tillgänglig från: 2019-01-18 Skapad: 2019-01-18 Senast uppdaterad: 2019-01-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Stork, Johannes Andreas

Sök vidare i DiVA

Av författaren/redaktören
Stork, Johannes Andreas
I samma tidskrift
IEEE Transactions on robotics
Datavetenskap (datalogi)Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 151 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf