oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process
Department of Mathematics, University of Turku, Turku, Finland; Turku Centre for Biotechnology, Turku, Finland.
Turku Centre for Biotechnology, Turku, Finland.
Turku Centre for Biotechnology, Turku, Finland; VTT Biotechnology, Espoo, Finland.ORCID-id: 0000-0002-2856-9165
Turku Centre for Biotechnology, Turku, Finland.
Visa övriga samt affilieringar
2007 (Engelska)Ingår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 23, nr 16, s. 2096-2103Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

MOTIVATION: Coexpression networks have recently emerged as a novel holistic approach to microarray data analysis and interpretation. Choosing an appropriate cutoff threshold, above which a gene-gene interaction is considered as relevant, is a critical task in most network-centric applications, especially when two or more networks are being compared.

RESULTS: We demonstrate that the performance of traditional approaches, which are based on a pre-defined cutoff or significance level, can vary drastically depending on the type of data and application. Therefore, we introduce a systematic procedure for estimating a cutoff threshold of coexpression networks directly from their topological properties. Both synthetic and real datasets show clear benefits of our data-driven approach under various practical circumstances. In particular, the procedure provides a robust estimate of individual degree distributions, even from multiple microarray studies performed with different array platforms or experimental designs, which can be used to discriminate the corresponding phenotypes. Application to human T helper cell differentiation process provides useful insights into the components and interactions controlling this process, many of which would have remained unidentified on the basis of expression change alone. Moreover, several human-mouse orthologs showed conserved topological changes in both systems, suggesting their potential importance in the differentiation process.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2007. Vol. 23, nr 16, s. 2096-2103
Nationell ämneskategori
Bioinformatik och systembiologi
Identifikatorer
URN: urn:nbn:se:oru:diva-70910DOI: 10.1093/bioinformatics/btm309ISI: 000249818300009PubMedID: 17553854Scopus ID: 2-s2.0-34548550573OAI: oai:DiVA.org:oru-70910DiVA, id: diva2:1345900
Tillgänglig från: 2019-08-26 Skapad: 2019-08-26 Senast uppdaterad: 2019-09-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Oresic, Matej

Sök vidare i DiVA

Av författaren/redaktören
Oresic, Matej
I samma tidskrift
Bioinformatics
Bioinformatik och systembiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 26 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf