A common room heating technique is to use a wall-mounted radiator without forced convection. The cold surrounding air passes adjacent to the warm surfaces of the radiator, gets heated, and the buoyancy difference gives this heated air a momentum to rise along the wall surface (as plume) and finally circulate and get mixed into the whole room. The properties of heated plumes are important for assessing the risk of soiling of the wall surfaces through particle deposition driven by thermophoresis and turbophoresis. It is important to identify where there is a transition from laminar to turbulent flow. With the objective to characterize the plume of heated air flow in the vicinity of wall surface, the airflow over the radiator is visualized and measured using the two-dimensional Particle Image Velocimetry (2D PIV) technique. The PIV technique yields two-dimensional vector fields of the flow. The resulted vector maps are size and peak validated and post processed using in house developed software to provide the average streamlines. In the near wall PIV measurements there are practical problems; generating a homogeneous global seeding that makes it possible to study both the plume and the surrounding entrainment region, and optical problems due to strong laser reflection from the wall surface which limits the investigation area. These issues are dealt with in the present study. In addition to visualization with PIV, visualization with a CMOS video camera was also conducted.
QC 20140828