Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting the Rate of Skin Penetration Using an Aggregated Conformal Prediction Framework
Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
Swetox, Karolinska Institute, Unit of Toxicology Sciences, Södertälje, Sweden; Department of Computer and Systems Sciences, Stockholm University, Kista, Sweden.ORCID-id: 0000-0003-3107-331X
2017 (Engelska)Ingår i: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 14, nr 5, s. 1571-1576Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Skin serves as a drug administration route, and skin permeability of chemicals is of significant interest in the pharmaceutical and cosmetic industries. An aggregated conformal prediction (ACP) framework was used to build models, for predicting the permeation rate (log K-p) of chemical compounds through human skin. The conformal prediction method gives as an output the prediction range at a given level of confidence for each compound, which enables the user to make a more informed decision when, for example, suggesting the next compound to prepare, Predictive models were built using;both the random forest and the support vector machine methods and were based on experimentally derived permeability data on 211 diverse compounds. The derived models were of similar predictive quality as compared to earlier published models but have the extra advantage of not only presenting a single predicted value for each, compound but also a reliable, individually assigned prediction range. The models use calculated descriptors and can quickly predict the skin permeation rate of new compounds.

Ort, förlag, år, upplaga, sidor
Washington: American Chemical Society (ACS), 2017. Vol. 14, nr 5, s. 1571-1576
Nyckelord [en]
conformal prediction, skin penetration nonconformist, Scikit Learn, random forest, Support vector machines
Nationell ämneskategori
Bioinformatik (beräkningsbiologi) Farmaceutiska vetenskaper
Identifikatorer
URN: urn:nbn:se:oru:diva-83150DOI: 10.1021/acs.molpharmaceut.7b00007ISI: 000400633300024PubMedID: 28335598Scopus ID: 2-s2.0-85018439844OAI: oai:DiVA.org:oru-83150DiVA, id: diva2:1440464
Tillgänglig från: 2017-06-02 Skapad: 2020-06-15 Senast uppdaterad: 2020-07-16Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Norinder, Ulf

Sök vidare i DiVA

Av författaren/redaktören
Norinder, Ulf
I samma tidskrift
Molecular Pharmaceutics
Bioinformatik (beräkningsbiologi)Farmaceutiska vetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 56 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf