Till Örebro universitet

oru.seÖrebro universitets publikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Relational data factorization
Machine Learning, Department of Computer Science, KU Leuven, Leuven, Belgium.
Machine Learning, Department of Computer Science, KU Leuven, Leuven, Belgium; Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands.
Machine Learning, Department of Computer Science, KU Leuven, Leuven, Belgium.ORCID-id: 0000-0002-6860-6303
2017 (Engelska)Ingår i: Machine Learning, ISSN 0885-6125, E-ISSN 1573-0565, Vol. 106, nr 12, s. 1867-1904Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Motivated by an analogy with matrix factorization, we introduce the problem of factorizing relational data. In matrix factorization, one is given a matrix and has to factorize it as a product of other matrices. In relational data factorization (ReDF), the task is to factorize a given relation as a conjunctive query over other relations, i.e., as a combination of natural join operations. Given a conjunctive query and the input relation, the problem is to compute the extensions of the relations used in the query. Thus, relational data factorization is a relational analog of matrix factorization; it is also a form inverse querying as one has to compute the relations in the query from the result of the query. The result of relational data factorization is neither necessarily unique nor required to be a lossless decomposition of the original relation. Therefore, constraints can be imposed on the desired factorization and a scoring function is used to determine its quality (often similarity to the original data). Relational data factorization is thus a constraint satisfaction and optimization problem. We show how answer set programming can be used for solving relational data factorization problems.

Ort, förlag, år, upplaga, sidor
Springer, 2017. Vol. 106, nr 12, s. 1867-1904
Nyckelord [en]
Answer set programming, Inductive logic programming, Pattern mining, Relational data, Factorization, Data mining, Declarative modeling
Nationell ämneskategori
Maskinteknik Datorteknik
Identifikatorer
URN: urn:nbn:se:oru:diva-84427DOI: 10.1007/s10994-017-5660-6ISI: 000415881500002Scopus ID: 2-s2.0-85027078830OAI: oai:DiVA.org:oru-84427DiVA, id: diva2:1452323
Konferens
25th International Conference on Inductive Logic Programming (ILP), Kyoto Univ, Kyoto, Japan, August, 20-22, 2015.
Tillgänglig från: 2020-07-06 Skapad: 2020-07-06 Senast uppdaterad: 2020-08-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

De Raedt, Luc

Sök vidare i DiVA

Av författaren/redaktören
De Raedt, Luc
I samma tidskrift
Machine Learning
MaskinteknikDatorteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 70 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf