Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adversarial Defense: DGA-Based Botnets and DNS Homographs Detection Through Integrated Deep Learning
Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia.
College of Engineering, IT and Environment, Charles Darwin University, Darwin NT, Australia.
Center for Computational Engineering and Networking, Amrita School of Engineering, Coimbatore Amrita Vishwa Vidyapeetham, Coimbatore, India.
Örebro universitet, Institutionen för naturvetenskap och teknik. (MRO AASS)ORCID-id: 0000-0003-1827-9698
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: IEEE transactions on engineering management, ISSN 0018-9391, E-ISSN 1558-0040, Vol. 70, nr 1, s. 249-266Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cybercriminals use domain generation algorithms (DGAs) to prevent their servers from being potentially blacklisted or shut down. Existing reverse engineering techniques for DGA detection is labor intensive, extremely time-consuming, prone to human errors, and have significant limitations. Hence, an automated real-time technique with a high detection rate is warranted in such applications. In this article, we present a novel technique to detect randomly generated domain names and domain name system (DNS) homograph attacks without the need for any reverse engineering or using nonexistent domain (NXDomain) inspection using deep learning. We provide an extensive evaluation of our model over four large, real-world, publicly available datasets. We further investigate the robustness of our model against three different adversarial attacks: DeepDGA, CharBot, and MaskDGA. Our evaluation demonstrates that our method is effectively able to identify DNS homograph attacks and DGAs and also is resilient to common evading cyberattacks. Promising results show that our approach provides a more effective detection rate with an accuracy of 0.99. Additionally, the performance of our model is compared against the most popular deep learning architectures. Our findings highlight the essential need for more robust detection models to counter adversarial learning.

Ort, förlag, år, upplaga, sidor
IEEE, 2023. Vol. 70, nr 1, s. 249-266
Nyckelord [en]
Botnet, cybercrime, cyber security, deep learning (DL), DNS attacks, domain generation algorithms (DGAs), domain name system (DNS), malware
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:oru:diva-91572DOI: 10.1109/TEM.2021.3059664ISI: 000732665500001OAI: oai:DiVA.org:oru-91572DiVA, id: diva2:1549031
Tillgänglig från: 2021-05-04 Skapad: 2021-05-04 Senast uppdaterad: 2023-02-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Arunachalam, Ajay

Sök vidare i DiVA

Av författaren/redaktören
Arunachalam, Ajay
Av organisationen
Institutionen för naturvetenskap och teknik
I samma tidskrift
IEEE transactions on engineering management
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 151 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf