Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Compiling Probabilistic Logic Programs into Sentential Decision Diagrams
Department of Computer Science, KU Leuven, Leuven, Belgium.
Department of Computer Science, KU Leuven, Leuven, Belgium.
Department of Computer Science, KU Leuven, Leuven, Belgium.
Department of Computer Science, KU Leuven, Leuven, Belgium.ORCID-id: 0000-0002-6860-6303
2014 (Engelska)Ingår i: Workshop on Probabilistic Logic Programming (PLP): Proceedings, 2014, Vol. 3, s. 1-10Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Knowledge compilation algorithms transform a probabilistic logic program into a circuit representation that permits efficient probability computation. Knowledge compilation underlies algorithms for exact probabilistic inference and parameter learning in several languages, including ProbLog, PRISM, and LPADs. Developing such algorithms involves a choice, of which circuit language to target, and which compilation algorithm to use. Historically, Binary Decision Diagrams (BDDs) have been a popular target language, whereas recently, deterministic-Decomposable Negation Normal Form (d-DNNF) circuits were shown to outperform BDDs on these tasks. We investigate the use of a new language, called Sentential Decision Diagrams (SDDs), for inference in probabilistic logic programs. SDDs combine desirable properties of BDDs and d-DNNFs. Like BDDs, they support bottom-up compilation and circuit minimization, yet they are a more general and flexible representation. Our preliminary experiments show that compilation to SDD yields smaller circuits and more scalable inference, outperforming the state of the art in ProbLog inference.

Ort, förlag, år, upplaga, sidor
2014. Vol. 3, s. 1-10
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-92042OAI: oai:DiVA.org:oru-92042DiVA, id: diva2:1558456
Konferens
1st International Workshop on Probabilistic Logic Programming (PLP 2014), Vienna, Austria, July 17, 2014
Tillgänglig från: 2021-05-31 Skapad: 2021-05-31 Senast uppdaterad: 2021-05-31Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

De Raedt, Luc

Sök vidare i DiVA

Av författaren/redaktören
De Raedt, Luc
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 62 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf