oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
To adapt or not to adapt: consequences of adapting driver and traffic light agents
UFRGS, Porto Alegre, Brazil.
UFRGS, Porto Alegre, Brazil.
Örebro universitet, Akademin för naturvetenskap och teknik. (Modeling and Simulation Research Center)ORCID-id: 0000-0002-1470-6288
TU Berlin. (Institute for Land and Sea Transport)
2008 (Engelska)Ingår i: Adaptive agents and multi-agent systems III: adaptation and multi-agent learning : 5th, 6th, and 7th European Symposium,ALAMAS 2005-2007on Adaptive and Learning Agents and Multi-Agent Systems : revised selected papers / [ed] Karl Tuyls, Ann Nowe, Zahia Guessoum, New York: Springer , 2008, s. 1-14Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

One way to cope with the increasing traffic demand is to integrate standard solutions with more intelligent control measures. However, the result of possible interferences between intelligent control or information provision tools and other components of the overall traffic system is not easily predictable. This paper discusses the effects of integrating co-adaptive decision-making regarding route choices (by drivers) and control measures (by traffic lights). The motivation behind this is that optimization of traffic light control is starting to be integrated with navigation support for drivers. We use microscopic, agent-based modelling and simulation, in opposition to the classical network analysis, as this work focuses on the effect of local adaptation. In a scenario that exhibits features comparable to real-world networks, we evaluate different types of adaptation by drivers and by traffic lights, based on local perceptions. In order to compare the performance, we have also used a global level optimization method based on genetic algorithms.

Ort, förlag, år, upplaga, sidor
New York: Springer , 2008. s. 1-14
Serie
Lecture Notes in Computer Science ; 4865
Nationell ämneskategori
Teknik och teknologier Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-5244DOI: 10.1007/978-3-540-77949-0_1ISBN: 978-3-540-77947-6 (tryckt)OAI: oai:DiVA.org:oru-5244DiVA, id: diva2:158352
Konferens
5th, 6th, and 7th European Symposium, ALAMAS 2005-2007 on Adaptive and Learning Agents and Multi-Agent Systems
Tillgänglig från: 2009-02-02 Skapad: 2009-02-02 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Klügl, Franziska

Sök vidare i DiVA

Av författaren/redaktören
Klügl, Franziska
Av organisationen
Akademin för naturvetenskap och teknik
Teknik och teknologierDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 394 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf