Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hierarchical goals contextualize local reward decomposition explanations
Örebro universitet, Institutionen för naturvetenskap och teknik. Department of Informatics, University of Hamburg, Hamburg, Germany.ORCID-id: 0000-0001-8151-4692
Hamburger Informatik Technologie-Center, Universität Hamburg, Hamburg, Germany.
Department of Computer and Information Science, Linköping University, Linköping, Sweden.
Örebro universitet, Institutionen för naturvetenskap och teknik.ORCID-id: 0000-0002-6013-4874
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Neural Computing & Applications, ISSN 0941-0643, E-ISSN 1433-3058, Vol. 35, nr 23, s. 16693-16704Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

One-step reinforcement learning explanation methods account for individual actions but fail to consider the agent's future behavior, which can make their interpretation ambiguous. We propose to address this limitation by providing hierarchical goals as context for one-step explanations. By considering the current hierarchical goal as a context, one-step explanations can be interpreted with higher certainty, as the agent's future behavior is more predictable. We combine reward decomposition with hierarchical reinforcement learning into a novel explainable reinforcement learning framework, which yields more interpretable, goal-contextualized one-step explanations. With a qualitative analysis of one-step reward decomposition explanations, we first show that their interpretability is indeed limited in scenarios with multiple, different optimal policies-a characteristic shared by other one-step explanation methods. Then, we show that our framework retains high interpretability in such cases, as the hierarchical goal can be considered as context for the explanation. To the best of our knowledge, our work is the first to investigate hierarchical goals not as an explanation directly but as additional context for one-step reinforcement learning explanations.

Ort, förlag, år, upplaga, sidor
Springer, 2023. Vol. 35, nr 23, s. 16693-16704
Nyckelord [en]
Reinforcement learning, Explainable AI, Reward decomposition, Hierarchical goals, Local explanations
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:oru:diva-99115DOI: 10.1007/s00521-022-07280-8ISI: 000794083400001Scopus ID: 2-s2.0-85129803505OAI: oai:DiVA.org:oru-99115DiVA, id: diva2:1659937
Anmärkning

Funding agencies:

Örebro University

Wallenberg AI, Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation

Federal Ministry for Economic Affairs and Climate FKZ 20X1905A-D

Tillgänglig från: 2022-05-23 Skapad: 2022-05-23 Senast uppdaterad: 2023-11-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Rietz, FinnStoyanov, TodorStork, Johannes A

Sök vidare i DiVA

Av författaren/redaktören
Rietz, FinnStoyanov, TodorStork, Johannes A
Av organisationen
Institutionen för naturvetenskap och teknik
I samma tidskrift
Neural Computing & Applications
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 152 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf