Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Framework of Robot Manipulability Learning and Control and Its Application in Telerobotics
Örebro universitet, Institutionen för naturvetenskap och teknik. (Center for Applied Autonomous Sensor Systems (AASS))ORCID-id: 0000-0002-0334-2554
Örebro universitet, Institutionen för naturvetenskap och teknik. (Center for Applied Autonomous Sensor Systems (AASS))ORCID-id: 0000-0001-8119-0843
2024 (Engelska)Ingår i: IEEE transactions on fuzzy systems, ISSN 1063-6706, E-ISSN 1941-0034, Vol. 32, nr 1, s. 266-280Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Manipulability ellipsoid on the Riemannian manifold serves as an effective criterion to analyze, measure, and control the dexterous performance of robots. For asymmetric bilateral telerobotics, due to the different structures of master and slave robots, it is difficult or even impossible for the operator to manually regulate the manipulability of the remote slave robot. Thus, it is desired that the slave robot can automatically regulate its manipulability to assist the operator in remote different task executions, like humans regulating their own postures to enhance manipulability and adapt to different task scenarios. This article proposes a novel framework for manipulability transfer from human to robot. In this framework, we develop a Type-2 fuzzy model-based imitation learning method to encode and reproduce manipulability ellipsoids from demonstrations. This method can achieve high performance in accuracy and computational efficiency. In addition, it supports learning from a single demonstration. Then, we combine this method with a Riemannian manifold-based quadratic programming control algorithm such that the robot manipulability can fast track the desired manipulability profile. This framework is applied to telerobotics, in which a bilateral teleoperation controller is designed that enables the robot to follow the operator's command and simultaneously self-regulate its manipulability to perform the task adaptively. Meanwhile, the operator can receive force feedback relating to the manipulability regulation. Evaluations using comparative studies and practical experiments with a 3-DoF haptic device and 7-DoF robots are presented to show the effectiveness of the proposed framework.

Ort, förlag, år, upplaga, sidor
IEEE, 2024. Vol. 32, nr 1, s. 266-280
Nyckelord [en]
Bilateral telerobotics, imitation learning, manipulability ellipsoids, Riemannian manifold, type-2 fuzzy model
Nationell ämneskategori
Robotik och automation
Identifikatorer
URN: urn:nbn:se:oru:diva-107171DOI: 10.1109/TFUZZ.2023.3297665ISI: 001136745800022Scopus ID: 2-s2.0-85165330369OAI: oai:DiVA.org:oru-107171DiVA, id: diva2:1783193
Forskningsfinansiär
KK-stiftelsen, 20210016
Anmärkning

Funding agency:

Swedish Knowledge Foundation in the TeamRob Synergy under Project 20210016

Tillgänglig från: 2023-07-19 Skapad: 2023-07-19 Senast uppdaterad: 2025-02-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Sun, DaLiao, Qianfang

Sök vidare i DiVA

Av författaren/redaktören
Sun, DaLiao, Qianfang
Av organisationen
Institutionen för naturvetenskap och teknik
I samma tidskrift
IEEE transactions on fuzzy systems
Robotik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 179 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf