Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Liquid and gas-chromatography-mass spectrometry methods for exposome analysis
Örebro universitet, Institutionen för naturvetenskap och teknik.ORCID-id: 0000-0002-9535-6821
Örebro universitet, Institutionen för naturvetenskap och teknik.ORCID-id: 0000-0002-4483-8329
Örebro universitet, Institutionen för naturvetenskap och teknik.ORCID-id: 0000-0003-3560-5838
Örebro universitet, Institutionen för medicinska vetenskaper. Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.ORCID-id: 0000-0002-2856-9165
Visa övriga samt affilieringar
2025 (Engelska)Ingår i: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1744, artikel-id 465728Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Mass spectrometry-based methods have become fundamental to exposome research, providing the capability to explore a broad spectrum of chemical exposures. Liquid and gas chromatography coupled with low/high-resolution mass spectrometry (MS) are among the most frequently employed platforms due to their sensitivity and accuracy. However, these approaches present challenges, such as the inherent complexity of MS data and the expertise of biologists, chemists, clinicians, and data analysts to integrate and interpret MS data with other datasets effectively. The "omics" era advances rapidly, driven by developments of AI-based algorithms and an increase in accessible data; nevertheless, further efforts are necessary to ensure that exposomics outputs are comparable and reproducible, thus enhancing research findings. This review outlines the principles of MS-based methods for the exposome analytical pipeline, from sample collection to data analysis. We summarize and review both standard and cutting-edge strategies in exposome research, covering sample preparation, focusing on MS-based platforms, data acquisition strategies, and data annotation. The ultimate goal of this review is to highlight applications that enable the simultaneous analysis of endogenous metabolites and xenobiotics, which can help enhance our understanding of the impact of human exposure on health and disease and support personalized healthcare.

Ort, förlag, år, upplaga, sidor
Elsevier, 2025. Vol. 1744, artikel-id 465728
Nyckelord [en]
Chromatography, Environmental pollutants, Exposome, Mass spectrometry, Metabolomics
Nationell ämneskategori
Analytisk kemi
Identifikatorer
URN: urn:nbn:se:oru:diva-119112DOI: 10.1016/j.chroma.2025.465728ISI: 001419544500001PubMedID: 39893915Scopus ID: 2-s2.0-85216583865OAI: oai:DiVA.org:oru-119112DiVA, id: diva2:1935121
Tillgänglig från: 2025-02-06 Skapad: 2025-02-06 Senast uppdaterad: 2025-02-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Castro Alves, VictorNguyen, Anh HoangBarbosa, João Marcos G.Oresic, MatejHyötyläinen, Tuulia

Sök vidare i DiVA

Av författaren/redaktören
Castro Alves, VictorNguyen, Anh HoangBarbosa, João Marcos G.Oresic, MatejHyötyläinen, Tuulia
Av organisationen
Institutionen för naturvetenskap och teknikInstitutionen för medicinska vetenskaper
I samma tidskrift
Journal of Chromatography A
Analytisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 12 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf