Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic appearance-based loop detection from three-dimensional laser data using the normal distributions transform
Örebro universitet, Akademin för naturvetenskap och teknik. (AASS Learning Systems Lab)ORCID-id: 0000-0001-8658-2985
Örebro universitet, Akademin för naturvetenskap och teknik. (AASS Learning Systems Lab)ORCID-id: 0000-0002-2953-1564
Jacobs University Bremen.
Örebro universitet, Akademin för naturvetenskap och teknik. (AASS Learning Systems Lab)ORCID-id: 0000-0003-0217-9326
2009 (Engelska)Ingår i: Journal of Field Robotics, ISSN 1556-4959, E-ISSN 1556-4967, Vol. 26, nr 11-12, s. 892-914Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We propose a new approach to appearance-based loop detection for mobile robots, usingthree-dimensional (3D) laser scans. Loop detection is an important problem in the simultaneouslocalization and mapping (SLAM) domain, and, because it can be seen as theproblem of recognizing previously visited places, it is an example of the data associationproblem. Without a flat-floor assumption, two-dimensional laser-based approaches arebound to fail in many cases. Two of the problems with 3D approaches that we address inthis paper are how to handle the greatly increased amount of data and how to efficientlyobtain invariance to 3D rotations.We present a compact representation of 3D point cloudsthat is still discriminative enough to detect loop closures without false positives (i.e.,detecting loop closure where there is none). A low false-positive rate is very important becausewrong data association could have disastrous consequences in a SLAM algorithm.Our approach uses only the appearance of 3D point clouds to detect loops and requires nopose information. We exploit the normal distributions transform surface representationto create feature histograms based on surface orientation and smoothness. The surfaceshape histograms compress the input data by two to three orders of magnitude. Becauseof the high compression rate, the histograms can be matched efficiently to compare theappearance of two scans. Rotation invariance is achieved by aligning scans with respectto dominant surface orientations. We also propose to use expectation maximization to fit a gamma mixture model to the output similarity measures in order to automatically determinethe threshold that separates scans at loop closures from nonoverlapping ones.Wediscuss the problem of determining ground truth in the context of loop detection and thedifficulties in comparing the results of the few available methods based on range information.Furthermore, we present quantitative performance evaluations using three realworlddata sets, one of which is highly self-similar, showing that the proposed methodachieves high recall rates (percentage of correctly identified loop closures) at low falsepositiverates in environments with different characteristics.

Ort, förlag, år, upplaga, sidor
Wiley-Blackwell, 2009. Vol. 26, nr 11-12, s. 892-914
Nationell ämneskategori
Teknik och teknologier Annan data- och informationsvetenskap
Forskningsämne
Datalogi
Identifikatorer
URN: urn:nbn:se:oru:diva-8431DOI: 10.1002/rob.20314ISI: 000270869800003Scopus ID: 2-s2.0-70449379456OAI: oai:DiVA.org:oru-8431DiVA, id: diva2:274842
Tillgänglig från: 2009-11-08 Skapad: 2009-11-02 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

fulltext(851 kB)1972 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 851 kBChecksumma SHA-512
77ba269cf9944a336fa7784f2ceb9ffb5f86d865b4b4f44eaa49f71b61cb015b5c13b1bcccf1c82dbafc772fba56e83047cc6ce99241b20d71115988cab9e007
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Magnusson, MartinAndreasson, HenrikLilienthal, Achim J.

Sök vidare i DiVA

Av författaren/redaktören
Magnusson, MartinAndreasson, HenrikLilienthal, Achim J.
Av organisationen
Akademin för naturvetenskap och teknik
I samma tidskrift
Journal of Field Robotics
Teknik och teknologierAnnan data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1977 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1698 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf