oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Visual analytics for maritime anomaly detection
Örebro universitet, Akademin för naturvetenskap och teknik. (Skövde Artificial Intelligence Lab (SCAI-Lab), Högskolan i Skövde)
2011 (Engelska)Doktorsavhandling, monografi (Övrigt vetenskapligt)
Abstract [en]

The surveillance of large sea areas typically involves  the analysis of huge quantities of heterogeneous data.  In order to support the operator while monitoring maritime traffic, the identification of anomalous behavior or situations that might need further investigation may reduce operators' cognitive load. While it is worth acknowledging that existing mining applications support the identification of anomalies, autonomous anomaly detection systems are rarely used for maritime surveillance. Anomaly detection is normally a complex task that can hardly be solved by using purely visual or purely computational methods. This thesis suggests and investigates the adoption of visual analytics principles to support the detection of anomalous vessel behavior in maritime traffic data. This adoption involves studying the analytical reasoning process that needs to be supported,  using combined automatic and visualization approaches to support such process, and evaluating such integration. The analysis of data gathered during interviews and participant observations at various maritime control centers and the inspection of video recordings of real anomalous incidents lead to a characterization of the analytical reasoning process that operators go through when monitoring traffic. These results are complemented with a literature review of anomaly detection techniques applied to sea traffic. A particular statistical-based technique is implemented, tested, and embedded in a proof-of-concept prototype that allows user involvement in the detection process. The quantitative evaluation carried out by employing the prototype reveals that participants who used the visualization of normal behavioral models outperformed the group without aid. The qualitative assessment shows that  domain experts are positive towards providing automatic support and the visualization of normal behavioral models, since these aids may reduce reaction time, as well as increase trust and comprehensibility in the system. Based on the lessons learned, this thesis provides recommendations for designers and developers of maritime control and anomaly detection systems, as well as guidelines for carrying out evaluations of visual analytics environments.

Ort, förlag, år, upplaga, sidor
Örebro: Örebro universitet , 2011. , s. 230
Serie
Örebro Studies in Technology, ISSN 1650-8580 ; 46
Nyckelord [en]
visual analytics, anomaly detection, maritime traffic monitoring, analytical reasoning, information fusion
Nationell ämneskategori
Teknik och teknologier Data- och informationsvetenskap Datavetenskap (datalogi)
Forskningsämne
Data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-12783ISBN: 978-91-7668-782-6 (tryckt)OAI: oai:DiVA.org:oru-12783DiVA, id: diva2:381336
Disputation
2011-03-17, Sal G110, G-huset, Högskolan i Skövde, Högskolevägen, Skövde, 13:15 (Engelska)
Opponent
Handledare
Projekt
Information Fusion Research Program, Högskolan i Skövde
Anmärkning
Maria Riveiro is also affiliated to Informatics Research Centre, Högskolan i SkövdeTillgänglig från: 2010-12-27 Skapad: 2010-12-27 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

fulltext(24418 kB)21297 nedladdningar
Filinformation
Filnamn FULLTEXT06.pdfFilstorlek 24418 kBChecksumma SHA-512
66a314c2edaa4dfbd02b32dc63b7e7ad32807737d45578cf7751162ebbb06fa14f193d8561132385f07cffb64d1f9d1140fa3a6171aa96e1443387363f977262
Typ fulltextMimetyp application/pdf
omslag(1607 kB)733 nedladdningar
Filinformation
Filnamn COVER01.pdfFilstorlek 1607 kBChecksumma SHA-512
ea1bc52325ab8831861c6eae90ce3b87a2628d7e57d5de251a3073b8be538102c9fa9ad13ac470fb628f875d5bb732489d0d367b752bd0d4cb66c04848b38c28
Typ coverMimetyp application/pdf
spikblad(530 kB)49 nedladdningar
Filinformation
Filnamn SPIKBLAD01.pdfFilstorlek 530 kBChecksumma SHA-512
4669451cd9fda97de0dd690021766eab2ade00749cf31d842f326c14bb9f9aaef98f8bc0bdcbfe23cd2d89e3508dcabd2b7127d6147238113d26c1c47b8f91c6
Typ spikbladMimetyp application/pdf

Av organisationen
Akademin för naturvetenskap och teknik
Teknik och teknologierData- och informationsvetenskapDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 21381 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 8262 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf